Functions

MAKE SURE THE LIBRARY PATH IS CORRECTLY SET

SRGeodesics_3Dexample_1.gif

SRGeodesics_3Dexample_2.png

SRGeodesics_3Dexample_3.png

SRGeodesics_3Dexample_4.png

Hamilton fast marching via FileIO

SRGeodesics_3Dexample_5.png

SRGeodesics_3Dexample_6.png

Hamilton fast marching via Wolfram Library Link

SRGeodesics_3Dexample_7.png

Utility functions

Euler angles (θ, φ) |→ (cos θ,sin θ cos φ,sin θ sin φ)

SRGeodesics_3Dexample_8.gif

Plotting arrows in Graphics3D

SRGeodesics_3Dexample_9.gif

SR geodesics in SE(3) for C != 1

Via Library Link

Domain specification:
In particular, specify how to sample the sphere. The code works with Euler angles via
        (θ, φ) |→ (cos θ,sin θ cos φ,sin θ sin φ),
θ is sampled from 0 to π with or from 0 to π/2 with Nθ samples for respectively the projective (with identification of antipodal points) or normal (full sampling) case,
φ is sampled from 0 to 2π with Nφ = 2Nθ or Nφ=4Nθ samples for respectively the projective or normal case.

Set data

SRGeodesics_3Dexample_10.gif

SRGeodesics_3Dexample_11.gif

SRGeodesics_3Dexample_12.png

SRGeodesics_3Dexample_13.png

SRGeodesics_3Dexample_14.png

Specify volume dimensions and sampling

SRGeodesics_3Dexample_15.png

Show sampling

SRGeodesics_3Dexample_16.gif

SRGeodesics_3Dexample_17.gif

1. make library link
2. set parameters (Check xyMinMax (the physical spatial range) and "gridScale" (smaller means more detail))
3. run code
4. get results
5. close library link
6. reformat the data

SRGeodesics_3Dexample_18.png

SRGeodesics_3Dexample_19.png

SRGeodesics_3Dexample_20.png

SRGeodesics_3Dexample_21.png

SRGeodesics_3Dexample_22.png

SRGeodesics_3Dexample_23.png

Show results

SRGeodesics_3Dexample_24.png

SRGeodesics_3Dexample_25.gif

SRGeodesics_3Dexample_26.png

SRGeodesics_3Dexample_27.gif

Via Library Link (positive case)

Domain specification:
In particular, specify how to sample the sphere. The code works with Euler angles via
        (θ, φ) |→ (cos θ,sin θ cos φ,sin θ sin φ),
θ is sampled from 0 to π with or from 0 to π/2 with Nθ samples for respectively the projective (with identification of antipodal points) or normal (full sampling) case,
φ is sampled from 0 to 2π with Nφ = 2Nθ or Nφ=4Nθ samples for respectively the projective or normal case.

Set data

SRGeodesics_3Dexample_28.gif

SRGeodesics_3Dexample_29.gif

SRGeodesics_3Dexample_30.png

SRGeodesics_3Dexample_31.png

SRGeodesics_3Dexample_32.gif

Specify volume dimensions and sampling

SRGeodesics_3Dexample_33.png

Show sampling

SRGeodesics_3Dexample_34.gif

SRGeodesics_3Dexample_35.gif

1. make library link
2. set parameters (Check xyMinMax (the physical spatial range) and "gridScale" (smaller means more detail))
3. run code
4. get results
5. close library link
6. reformat the data

SRGeodesics_3Dexample_36.png

SRGeodesics_3Dexample_37.png

SRGeodesics_3Dexample_38.png

SRGeodesics_3Dexample_39.png

SRGeodesics_3Dexample_40.png

SRGeodesics_3Dexample_41.png

Show results

SRGeodesics_3Dexample_43.png

SRGeodesics_3Dexample_44.gif

Created with the Wolfram Language