
DRAFT VERSION of PART II:

Invertible Orientation Scores

R. Duits · E.J. Bekkers

Abstract Inspired by the early visual system of many mammalians we consider the construction of-and
reconstruction from- an orientation score Uf : Rd × Sd−1 → C as a local orientation representation of an
image, f : Rd → R for d ∈ {2, 3}. The mapping f 7→ Uf is a wavelet transform Wψ corresponding to
a reducible representation of the Euclidean motion group onto L2(Rd) and oriented wavelet ψ ∈ L2(Rd).
This wavelet transform is a special case of generalized wavelet theory and has the practical advantage
over the usual wavelet approaches in image analysis (constructed by irreducible representations of the
similitude group) that it allows a stable reconstruction from one (‘all scale’) orientation score. Since our
wavelet transform is a unitary mapping with stable inverse, we directly relate operations on orientation
scores to operations on images in a robust manner.

Furthermore, we show that an operator Φ on orientation scores must be left invariant to ensure
that the corresponding operator W−1

ψ ◦ Φ ◦ Wψ on images is Euclidean invariant. The specific design of
left-invariant operators (e.g. diffusions, wavefront propagation) will be pursued in subsequent sections.

Literature: This section of the lecture notes is primarily based on the following scientific works
[18,48,2,52,19,6,23,25,24].

Learning objectives:

– Understand the general benefits of an invertible orientation score.
– Understand that the domain of an orientation score of a 2D image is the Lie group SE(2).
– Understand that the domain of an orientation score of a 3D image is the Lie group quotient SE(3)/(0×
SO(2))

– Understand why orientation score processing must be left-invariant and not right-invariant.
– Know how to apply invertible orientation scores to images via the ‘Lie-Analysis’ Mathematica package.

To be downloaded from www.lieanalysis.nl
– Know how to prove general unitarity results.
– Understand the design of proper wavelets for invertible orientation scores.

NB:
Technical parts and exercises with extra material are indicated in blue and may be skipped: The black
text forms the core of the course and does not rely on the blue parts. Regular exercises are indicated in
red.

In many medical image applications it is desirable to construct a local orientation-score of a grey-value
image. In the case of 2D images f : R2 → R such an orientation score Uf : R2 o S1 → C depends on 3
variables (b1, b2, e

iθ), where b = (b1, b2) ∈ R2 denote position and where eiθ ∈ S1 ↔ (cos θ, sin θ) ∈ S1 is
a local orientation variable.
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Fig. 1 Inspiration for Orientation Scores. Left: A:Parts of visual cortex active under different orientation stimuli.
B: Orientation preference map obtained by vector summation of data obtained for each angle. Orientation preference is
color coded according to the key shown below, replicated with permission from [9], copyright 1997 Society of Neuroscience.
Right:enlarged section of the rectangular area in the upper figure. Shaded and unshaded areas denote the left and right
eye resp. Colored lines connect cells with equal orientation sensitivity, replicated with permission from [73].

Mostly, such an orientation score is obtained by means of a convolution with some anisotropic
wavelet ψ ∈ L2(R2) ∩ L1(R2), cf.[52],[41]:

Uf (b, eiθ) =

∫
R2

ψ(R−1
θ (x′ − b))f(x′) dx′ , with Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. (1)

This idea is inspired by the early visual system of many mammalians, in which receptive fields exist that
are tuned to various locations and orientations. Thereby a simple cell receptive field can be parameterized
by its position and orientation. Assemblies of oriented receptive fields are grouped together on the surface
of the primary visual cortex in a pinwheel like structure, known as the orientation preference structure.

The orientation preference structure is an almost everywhere smooth mapping of the Euclidean motion
group space R2oS1 onto the 2D surface. Due to the difference in dimensionality, the orientation preference
structure is punctuated by so-called pinwheels, which are singularities in this mapping, see Figure 1.

For a conceptually convincing overview of the role of sub-Riemannian geometry (and orientation anal-
ysis) in modeling the perception of curvilinear structures in the primary visual cortex we refer to the
pioneering works of Petitot and Citti-Sarti [61,62,13]. These interesting works on cortical modeling may
be considered as a source of inspiration for our objective of developing (digital) image processing tools via
invertible orientation scores.

See Figure 2 for an illustration of the construction of an orientation score of a 2D image. As invertible
orientation scores are actually complex-valued with a real part indicating all local lines in images, and an
imaginary part indicating all local edges in images (as we will explain later), we stress that in Figure 2 only
the real part of the orientation score is visualized. In Figure 3 we show a key advantage of an orientation
score, we enlarge the domain of an image, which allows for crossing wavefronts. In Figure 4 we give two
simple examples of image processing via invertible orientation scores.

Perceptual organization (or image enhancement) on the basis of orientation similarity on images f can
be done via their orientation scores Uf , as there exists a linear well-posed invertible transformation Wψ

from the image f to the orientation score Uf and vice versa. This invertibility ensures that no information is
lost in the decomposition of an input image into various orientations. Regarding the orientation preference
structure in the visual system this implies that the orientation score may serve as an alternative format
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Fig. 2 Construction of Orientation Scores. An orientation score is constructed by filtering an image with a set of
rotated anisotropic filters. Here we show only the real part of the orientation score. The top row shows two of such rotated
filters and their responses on the input image. In an orientation score Uf , obtained via the orientation score transform
Wψ , such responses are “stacked” on top of each other. Using so-called cake-wavelets (to be explained in Sec. 3.1) for ψ
one obtains an invertible orientation score transformation Wψ , for which a stable inverse transformation W∗ψ exists: one

can reconstruct the image from the orientation score without loss of information.

to the input luminance function, since there is no loss of data evidence1. As a tool for image processing,
however, the inverse mapping from orientation score to original image is a very useful one as we will see
later.

The domain of an orientation score Uf is the well-known Euclidean motion group G = SE(2) = R2oS1,
with group product

g g′ = (b, eiθ)(b′, eiθ
′
) = (b +Rθb

′, ei(θ+θ
′)) , g = (b, eiθ), g′ = (b′, eiθ

′
) ∈ R2 o S1. (2)

and the mapping f 7→ Uf is a wavelet transformation2

Uf (b, eiθ) := (Wψ[f ])(g) := (Ugψ, f)L2(R2) = (TbReiθψ, f)L2(R2) , g = (b, eiθ) , (3)

where TbReiθψ is the translated and rotated wavelet and the representation g 7→ Ug is given by

Ugψ(x) = (TbReiθψ)(x) = ψ(R−1
θ (x− b)) , g = (b, eiθ) ∈ G,x ∈ R2, (4)

where (Tbψ)(x) = ψ(x − b),x ∈ Rd and (Reiθψ)(x) = ψ(R−1
θ x), with Rθ, θ ∈ [0, 2π), the counter

clock-wise rotation given in (1).
Because the local orientation is explicitly encoded in the orientation score, it is much easier to do

(enhancement or perceptual organization) operations based on local orientations in the score.

1 This does not imply that the visual system of mammalians actually runs an inverse process.
2 Note that we take the convention that inner-products are linear in the second entry.
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Fig. 3 The Advantage of an Orientation Score. Top: An invertible orientation score is an image representation that
provides a complete overview of how the image is decomposed out of local orientations. Bottom: Conventional wavefront
propagation in images (in red) typically leaks at crossings, whereas the wavefront propagation in orientation scores (in
green) does not suffer from this fundamental complication. A minimum intensity projection over orientation gives the
optimal fronts in the image. The orange densities denote mobility in the score. This regulates the speed of the propagation
of the green opaque spheres (whose precise geometric meaning will be explained later in Part III).

Image Orientation Score Processed
Image

Processed 
Orientation Score

Fig. 4 Processing via Invertible Orientation Score. Top: instead of direct processing of an image, we process via
an invertible orientation score. Such a score is obtained by convolving the image with a family of rotated proper wavelets
allowing for stable reconstruction (cf. Theorem 2 and Theorem 3).Second row: Example of vessel-tracking in a 2D image
via orientation scores as we will explain in Part III. Third row: Example of crossing-preserving diffusion via invertible
orientation scores of a basic 3D image [48]. Here the modulus of the (processed) orientation score is 5D and visualized by
a grid of angular profiles (see preliminaries, Eq. (7)).
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Structure of Part II

In Section 1 we will investigate and quantify the wellposedness of the transform Wψ between images and
orientation scores, which depends strongly on the choice of mother-wavelet ψ.

We first motivate in Subsection 1.1 why standard continuous wavelet theory does not apply to our case
of interest.

Then in Subsection 1.2 we will start with a general reproducing kernel Hilbert space view-point which
leads to a general unitarity result in Lemma 4 and a sampling theorem in Lemma 5. This yields a general
view on continuous wavelet theory. For example, although convenient, the SE(d) group structure (which
is important for processing on orientation scores) is actually irrelevant for unitarity results. It is also not
needed to maintain such a group structure in finite discretizations; for d > 2 it would be too restrictive.

In Subsection 1.3 we summarize the main unitarity result for the orientation score transform Wψ in
Theorem 2. Here we note that if one wants to drop the constraint to disk limited images for the orientation
score transform, one must rely on distributional wavelet transforms and this explained in Appendix A.

In Subsection 1.4 we will show that the wellposedness ofWψ is highly dependent on the choice of wavelet
ψ via a continuous function Mψ, which is summarized in Theorem 2, while analyzing formal condition
numbers in Theorem 3. We introduce the notion of proper wavelets, that allow stable reconstruction. Here
we also account for proper wavelets with the fast reconstruction property, in the sense that a practical
integration over angles only suffices for a close approximate image reconstruction.

In Subsection 1.5 we account for a finite number of orientations, and introduce the notion of proper
wavelet sets.

Although group representation theory is not crucial for the unitarity results, it does provide a nice
structured insight in the construction of proper wavelets via (inverse) Fourier transform on SE(2).

In Section 2 we express Wψ as an inverse Fourier transform in Eq. (59), and deduce unitarity of
Wψ via the Plancherel theorem on SE(2). It does provide a structured view on Theorem 2. Basically,
it shows that the ideal case with Mψ = 1B0,% (or Mψ = 1 in the distributional setting of Appendix A)
corresponds to a proper wavelet ψ with equal quadratic mass in each irreducible subspace in the image
domain, such that it is unitarily mapped to the irreducible subspace in the orientation score domain.
In fact, this is a over-countable generalization of vector-coherent states [2], and follows general ideas in
the work on abstract harmonic analysis by Hartmut Führ [40]. For an in-depth treatment the reader is
referred to [40, ch:4,ch:5.2]. For explanations on the tool of direct integrals see [40, ch:3.3].

In Section 3 we study the construction of proper 2D and 3D wavelets (and proper wavelet sets).
Here we distinguish between:

– Cakewavelets in Subsection 3.1.
– Proper wavelets by expansion in a basis eigenfunctions of the harmonic oscillator in Subsection 3.2.
– Proper wavelets by expansion in a modified (weighted) Zernike basis in Subsection 3.3.

In Section 4 we will provide a first quick overview on image processing via the constructed invertible
orientation scores, that we will pursue in this course. Here we distinguish between:

– Geodesic wavefront propagation in orientation scores.
– Geodesic tracking in orientation scores.
– Crossing preserving diffusions in orientation scores.
– Feature analysis in orientation scores.
– Template matching in orientation scores.
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Preliminaries and Notation

– The Fourier transform F : L2(Rd)→ L2(Rd), is almost everywhere defined by

[F(f)](ω) = f̂(ω) =
1

(2π)d/2

∫
Rd

f(x) e−iω·x dx .

– The convolution f1 ∗ f2 of two scalar-valued integrable functions f1 : Rd → C and f2 : Rd → C is the
scalarvalued function by

(f1 ∗ f2)(x) =

∫
Rd

f1(x− v)f2(v) dv.

Note that ‖Ff‖2 =‖f‖2 and F(f1 ∗ f2)=(2π)
d
2F(f1)F(f2), for all f1, f2 ∈ L2(Rd).

– let f1, f2 be two elements of L2(Rd) then their L2-inner product is denoted by

(f1, f2)L2(Rd) =

∫
Rd

f1(x)f2(x) dx.

– For d = 2: We use the following notation for Euclidean/polar coordinates in spatial and Fourier domain,
respectively:

x = (x1, x2)T = (x, y)T = (r cosφ, r sinφ), ω = (ω1, ω2)T = (ρ cosϕ, ρ sinϕ)T ,

with φ, ϕ ∈ [0, 2π), r, ρ > 0. The corresponding complex variables will be denoted by z = x+ iy = reiφ

and w = ωx + iωy = ρeiϕ.
– For d = 3: We use the following notation for Euclidean/Ball coordinates in spatial and Fourier domain:

x = (x1, x2, x3)T = (x, y, z)T = r(cosφ sin θ, sinφ sin θ, cos θ)T ,

ω = (ω1, ω2, ω3)T = ρ(cosϕ sinϑ, sinϕ sinϑ, cosϑ)T .

– Images are assumed to be within L2(Rd). We mainly consider d = 2, unless explicitly stated otherwise.
The space of ball-limited (by % > 0) images is given by

L%2(Rd) = {f ∈ L2(R2) | supp(F [f ]) ⊂ B0,%}, % > 0, (5)

where B0,% = {ω ∈ Rd | ‖ω‖ < %}.
– For d = 3 we often rely on spherical harmonics given by on

Yml (β, γ) =

√
2l + 1

4π

√
(l −m)!

(l +m)!
eimγPml (cosβ), (6)

where Pml is the associated Legendre function and with integer order l ≥ 0 and integer phase factor
−l ≤ m ≤ l.

– With B(H) we denote the space of bounded linear operators on H. The range of a linear operator A
will be denoted by R(A) and its nilspace will be denoted by N (A).

– The 2D-Gaussian kernel Gs at scale s is given by Gs(x) = 1
4πse

− ‖x‖
2

4s .

– Glyph Visualization : Functions U : R3 o S2 → R+ will be visualized by a glyph visualization. E.g.
in the 1 bottom-middle figures of Fig. 4. A glyph at a grid point y ∈ c Z3, c > 0, is given by the surface

{y + νU(y,n)n | n ∈ S2}, (7)

for a suitable choice of ν ∈ R. Usually we choose ν > 0 depending on the maximum of U , such that
the glyphs (within the grid of glyphs) do not intersect.
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Preliminaries on Group Representations

Definition 1 (representations)
A representation R of a group G onto a Banach space H is a homomorphism R between G and B(H), the
space of bounded linear operators on H. I.e. it must satisfy

Rgh = RgRh for all g ∈ G, h ∈ G, and Re = I , (8)

where I is the identity map.

Definition 2 Let G be a Lie group. Then according Haar’s theorem there exist an –up to contant
multiplication– unique non-trivial Radon measure3 µ on the Borel subset of G such that it is left-invariant

µ(gS) = µ(S) for all g ∈ G and all Borel sets S ⊂ G. (9)

For measurable functions U : G→ C we use short-notation:∫
G

Ũ(g) dg :=

∫
G

Ũ(g) dµ(g).

Left-invariance of the Haar measure (9) gives dµ(q g′) = dµ(g′) for all q, g′ ∈ G. In fact (9) amounts to∫
S

Ũ(q−1g) dg =
∫
S

Ũ(g′)d(q g′) =
∫
S

Ũ(g′)dg′,

for all measurable functions U : S → C on some Borel set S ⊂ G.
(10)

In particular for elements Ũ ∈ Lp(G) with p ≥ 1 one writes

‖Ũ‖Lp(G) :=

(∫
G

|Ũ(g)|pdg

) 1
p

.

Definition 3 (left/right regular representations)
Let G be a Lie group. Then its right regular representation R : G→ B(L2(G)) is given by

RgŨ(h) = Ũ(hg) for all g, h ∈ G and all Ũ ∈ L2(G), (11)

whereas its left regular representation L : G→ B(L2(G)) is given by

LgŨ(h) = Ũ(g−1h) for all g, h ∈ G and all Ũ ∈ L2(G) (12)

Definition 4 (properties of representations)
Let G be a group and H a Hilbert space.

A representation R : G → B(H) is said to be irreducible if the only invariant closed subspaces of H
are H and {0} and otherwise reducible.

A representation U : G→ B(H) is called unitary if (Ug)∗ = U−1
g for all g ∈ G.

Examples:

– Let G be a Lie group. Then the left regular representation G 3 g 7→ Lg ∈ B(L2(G)) is a unitary
representation.

– Let G be a Lie group. Then the right regular representation G 3 g 7→ Rg ∈ B(L2(G)) is a unitary
representation.

– Set G = SE(2). Then the left regular action of the Euclidean motion group g 7→ Ug on H = L2(Rd)
given by (4) is unitary representation. We will also show that it is reducible.

Lemma 1 (Schur’s lemma)
Let R : G → B(X) be an irreducible representation of a Lie group G on a Banach space (X, ‖ · ‖). Let
A : X → X be a bounded linear operator on X such that

∀g∈G : Rg ◦A = A ◦ Rg

then A is a scalar multiple of the identity A = λ I for some λ ∈ C.

3 I.e. countably additive, regular (inner-regular and outer regular), and its assigns finite values to compact sets.
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Proof. As A is bounded and linear it is continuous and for all µ ∈ C we have V := N (A − µI) is closed
in (X, ‖ · ‖). Now for all g ∈ G the operator Rg maps V onto itself. So either V = {0} or V = X. Now
any operator has a complex eigenvalue say λ ∈ C. Then choose µ = λ in which case V 6= {0} so that
N (A− λI) = X so that A = λI.

Definition 5 (matrix groups)
We define the following matrix groups:

– Aut(Rd) = {A : Rd → Rd | A linear and A−1 exists}
– dilation group D(d) = {A ∈ Aut(Rd) | A = aI, a > 0} .
– orthogonal group O(d) = {X ∈ Aut(Rd) | XT = X−1}
– rotation group SO(d) = {R ∈ O(d) | det(R) = 1}.
– circle group S1 = {z ∈ C | |z| = 1}, z = eiθ, θ = arg z with group homomorphism τ : S1 → SO(2) ⊂

Aut(R2), given by τ(z) = Rθ, recall (1).
– roto-translation group SE(2) = R2 o SO(2) with group product (2).
– Set d ∈ {2, 3}. Then the roto-translation group SE(d) = Rd o SO(d) is equipped with group product

g1g2 = (x1, R1)(x2, R2) = (x1 +R1x2, R1R2), (13)

for all (x1, R1) ∈ Rd o SO(d) and all (x2, R2) ∈ Rd o SO(d).
(NB. Since it is a semi-direct product (as the rotation element R1 affects the product in the spatial
part in (13)) we write SE(d) = Rd o SO(d) instead of Rd × SO(d)).

Note that S1 ≡ SO(2) ≡ R/[0, 2π) under identification

eiθ ↔ Rθ ↔ θ(Mod 2π). (14)

In the lecture notes we will sometimes rely on this straightforward identification.

Example 1 Under identification (14) the Haar measure on SE(2) is given by (verify its left-invariance
(10)!):

dg = dxdθ . (15)

so that for all measurable functions Ũ : G→ C one has∫
G

Ũ(g)dg =

π∫
−π

∫
R2

Ũ(x, θ) dxdθ.

Definition 6 Let b ∈ Rd, a > 0 . Then the unitary operators f 7→ f̌ , τb, Da are defined by

f̌(x) = f(−x) and Tbψ(x) = ψ(x− b) and Daψ(x) = 1

a
d
2
ψ(x

a ), (16)

which are left regular actions of O(1),Rd, D(d) in L2(Rd) .

Definition 7 (generators of group representations)
Let H be a Hilbert space. Let V : G → B(H) be some group representation of a Lie group G with unity
element e. Let Te(G) denote the Lie algebra of the Lie group. Let A ∈ Te(G). Then the corresponding
generator/derivative dV(A) is defined as follows:

dV(A)f := lim
t→0

t−1(VetA − I)f, for all f ∈ DH , (17)

where DH ⊂ H is a domain of sufficiently regular f ∈ H such that limit dV(A)f exists in H.

Exercise 1 (group-representations)

a.) Show that for any group-representation R : G→ B(H) on some Banach space H one has that

Rg−1 = (Rg)−1 for all g ∈ G.
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b.) Assume that the Haar measure on G is both left and right-invariant, i.e. dµG(hg) = dµG(gh) = dµG(g)
for all h, g ∈ G.
Show that the above group-representations U , L and R (given by respectively (4), (12) and (11)) are
indeed group representations. I.e. show that they indeed satisfy (8).

c.) Show that the above group-representations U , L and R are indeed unitary group representations.
d.) Show that Lie group SE(d) equipped with product (13) can be identified with a matrix group that is

a subgroup of GL(d+ 1) .

hint: (x, R)↔
(
R x
0 1

)
.

e.) Set G = SE(2) ≡ R2 × S1. Consider the unity element e = (x = (x, y) = (0, 0), θ = 0). Set A3 = ∂θ|e.
Show that

dU(A3) = +y∂x − x∂y.

hint: note that etA3 = (0, 0, eit) recall Exercise 12 of Part I of the lecture notes.

1 Quantification of Wellposedness of Transformations between Image and Orientation Score

Because the local orientation is explicitly encoded in the orientation score, it is much easier to do (enhance-
ment or perceptual organization) operations based on local orientations on the score. However, well-posed
image enhancement on the basis of orientation similarity in an image f (without loss of data evidence) can
be done via its orientation score Uf iff there exists a stable transformation from image f to Uf and vice
versa. Stability entails that a small4 perturbation in the image, must correspond to a small perturbation
on the orientation score and vice versa. For instance in the case of the Fourier transform, the stability is
ensured by the Plancherel theorem, which states that ‖F(f)‖2L2(Rd) = ‖f‖2L2(Rd) for all images f ∈ L2(Rd).
In standard wavelet theory there also exists such a theorem, but this is not applicable to our case, which
requires some extra generalization of standard continuous wavelet theory.

1.1 Why Standard Wavelet Theory is not Applicable to our Application

In this subsection we first explain why standard wavelet theory, summarized in Theorem 1, can not be
applied to the framework of orientation scores. Then we give a short summary (only as far as relevant for
our purpose) of the results from a new wavelet theory which we developed in earlier work.

Let H be a Hilbert space, e.g. the space of images L2(Rd). Let U be an irreducible unitary represen-
tation of the locally compact group G, with left-invariant Haar measure µG. Recall the definitions in the
preliminaries.

Let ψ ∈ H be admissible, i.e. Cψ =

∫
G

|(Ugψ,ψ)|2

(ψ,ψ)
dµG(g) <∞ (18)

then the wavelet transform Wψ : H → L2(G) is defined by

(Wψf)(g) = (Ugψ, f)H . (19)

The next theorem is well-known in mathematical physics [74], and is first formulated and proven in Gross-
mann et al. [44].

Theorem 1 (The Continuous Wavelet Reconstruction Theorem) The wavelet transformWψ given
by (19) and constructed from an unitary irreducible representation U , is a linear isometry (up to a constant)
from the Hilbert space H onto a closed subspace CGKψ of L2(G,dµ):

‖Wψ[f ]‖2L2(G) = Cψ‖f‖2 for all f ∈ H, (20)

4 Notice that this depends on the norm imposed on the set of images and on the norm imposed on the set of orientation
scores.
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The space CGKψ is the unique functional Hilbert space with reproducing kernel

Kψ(g, g′) =
1

Cψ
(Ugψ,Ug′ψ).

The corresponding orthogonal projection Pψ : L2(G,dµ)→ CG
Kψ

is given by

(PψΦ)(g) =

∫
G

Kψ(g, g′)Φ(g′) dµG(g′) Φ ∈ L2(G,dµ) . (21)

Furthermore, Wψ intertwines U and the left regular representation L —i.e. Lg is given by Lg(Φ) = (h 7→
Φ(g−1h))— on L2(G) : WψUg = LgWψ

Remark 1 If U is the left regular representation of G = RoD(1)oO(1) (the group consiting of translations,
dilations and polarity) onto H = L2(R) one obtains the more familiar framework of continuous wavelet
theory in 1D signal processing.

Remark 2 At this point one may just think of CGKψ as being the range of Wψ, i.e

U ∈ CGKψ ⇔ ∃f∈L2(R2) : U =Wψf.

In a later stage of the lecture notes (ch:1.2) we will clarify more on reproducing kernel spaces and their
notation.

Remark 3 The proof in [44] is more technical than one expects at first sight. Roughly, the idea is to apply
the generalized Schur’s Lemma, recall Lemma 22, (but then for closed, possibly unbounded operators [15])
to the kernel operator that a postiori equals W∗ψ ◦ Wψ. Only a postiori (i.e. after one has deduced that

Wψ is indeed linear and bounded from L2(Rd) into L2(G) so that W∗ψ is unqiuely determined by the
Riesz-representation theorem) one readily confirms (verify this!) via the result the usual Schur’s lemma
for bounded linear operators:

∀g∈G (W∗ψ ◦Wψ) ◦ Ug =W∗ψ ◦ Lg ◦Wψ = Ug ◦ (W∗ψ ◦Wψ)⇒W∗ψWψ = λ I, with λ = Cψ. (22)

Definition 8 In the setting of continuous wavelet transforms constructed from irreducible representations
an admissible wavelet ψ ∈ L1(Rd) ∩ L2(Rd) is a wavelet with Cψ <∞.

Definition 9 Let SIM(2) denote the group of planar translations, rotations and scalings. Its group prod-
uct is given by

(b1, θ1, a1)(b2, θ2, a2) = (b1 + a1Rθ1b2, θ1 + θ2 Mod 2π, a1a2).

Corollary 1 (standard continuous wavelet reconstruction schemes of 2D images)
Let ψ ∈ L2(R2) ∩ L1(R2) such that ψ̂(0) = 0, and consider

W
SIM(2)
ψ f(b, eiθ, a) =

(
V(b,eiθ,a)ψ, f

)
L2(R2)

=
1

a

∫
R2

ψ
(
a−1R−1

θ (x− b)
)
f(x) dx, (23)

with irreducible representation V : SIM(2)→ B(L2(R2)) given by

V(b,eiθ,a)ψ(x) =
1

a
ψ(a−1R−1

θ (x− b)). (24)

Then W
SIM(2)
ψ maps the space unitarily onto a closed (reproducing kernel) sub-space of L2(SIM(2)) and

we have
∀f∈L2(R2) : (W

SIM(2)
ψ )∗ ◦WSIM(2)

ψ f = f (25)



DRAFT VERSION of PART II: Invertible Orientation Scores 11

Exercise 2 (Application of the Wavelet Reconstruction Theorem to G = SIM(2))

a.) Show that the (up to scalar multiplications unique) left-invariant Haar-measure on the group of planar
rotations, translation and scalings SIM(2) = R2 o (SO(2)× R+) is given by

∫
SIM(2)

Ũ(g) dg =

π∫
−π

∫
R+

∫
R2

Ũ(b, θ, a)
db

a2

da

a
dθ (26)

for all Haar integrable functions Ũ : SIM(2)→ C. I.e. show that (10) holds for G = SIM(2).

hint: Study the Jacobian of the left-action g′ = (b, θ, a) 7→ qg′ = (b0, θ0, a0)(b, θ, a).
b Assume ψ ∈ L2(R2)∩L1(R2), which implies [66, Thm. 7.5] that Fψ is a continuous function vanishing

at infinity. Show that for all (b, θ, a) ∈ SIM(2) and all ω ∈ Rd one has

(F V(b,eiθ,a)ψ)(ω) = a (Fψ)(aR−1
θ ω) e−a(R−1

θ ω·b) i. (27)

c Assume ψ ∈ L2(R2)∩L1(R2), which implies [66, Thm. 7.5] that Fψ is a continuous function vanishing

at infinity. Show that if Cψ =
‖WSIM(2)

ψ f‖2L2(SIM(2))

‖f‖2
L2(R2)

is finite for all 0 6= f ∈ L2(R2) it equals

Cψ =

π∫
−π

∫
R+

|Fψ(aR−1
θ ω)|2 da

a3
dθ.

for all ω ∈ R2 with ω 6= 0.

hint: Use the previous result and the Plancherel theorem.

d.) Assume ψ ∈ L2(R2)∩L1(R2), which implies [66, Thm. 7.5] that Fψ is a continuous function vanishing
at infinity. Then show that

Cψ <∞⇒ ψ̂(0) =

∫
R2

ψ(x) dx = 0.

hint: you may use the result of the previous exercise.

e.) Find an expression for the adjoint operator (W
SIM(2)
ψ )∗ such that

∀U∈L2(SIM(2)) ∀f∈L2(R2) ((W
SIM(2)
ψ )∗U, f)L2(R2) = (U,W

SIM(2)
ψ f)L2(SIM(2)).

f.) Use the result from the previous exercise to rewrite (25) in an explicit reconstruction formula of the
type f(x) = ....

g.) Finish the proof of Corollary 1, where you may use (without proof) the fact that W
SIM(2)
ψ is bounded.

hint: follow the idea in Remark 2

Of course, we would like to apply Theorem 1 to the wavelet transformation that maps an image to its
orientation score, recall (3), since it would imply that reconstruction of an image from its orientation score
is perfectly well-posed in the sense that (just like in Fourier transform) the quadratic norm is preserved.
Unfortunately, the next lemma shows us that the group representation used to construct an orientation
score is not reducible!

Therefore we cannot apply standard continuous wavelet theory to the orientation score transform. To
account for this fundamental problem, in the subsequent subsections we aim to (re-)formulate continuous
wavelet theory in such a way that irreducibility is neither a requirement nor replaced by a requirement.

Lemma 2 The left-regular action U of the Euclidean motion group in L2(R2), given by (3), is a reducible
representation.
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Fig. 5 Integrating the discrete orientation score U4
f over its 4 discrete orientations (28), boils down to convolution with

the discrete spike δ.

Proof : Consider the subspace consisting of L2-functions whose Fourier transform have a support inside
a given disk around the origin with radius, say % > 0, i.e. L%2(R2) = {f ∈ L2(R2) | supp(Ff) ⊂ B0,%},
then this is a non-trivial vector space unequal L2(R2) which is invariant under U , which directly follows
by F(Ugψ) = eiω·bReiθFψ, for all ψ ∈ L%2(R2) �.

Corollary 2 Theorem 1 can not be applied to the transform between images and orientation scores that
is given by (3).

We could consider the similitude group SIM(2) = R2 oS1×D(1) with representation V given by (24),
which is irreducible, for proof see [54]p.51-52. Recall that this was studied in Exercise 2. Indeed this brings
us within the standard wavelet frameworks in 2D image analysis (in particular to 2D Gabor wavelets, [53],
or Cauchy-wavelets [3]).

However, from a practical and efficiency point of view we do not want to consider multiple scales,
but merge all scales in a single wavelet. This pertains to the so-called Euclidean coherent states from
mathematical physics5 [45].

Clearly, omitting the dilation group has serious consequences (as we have to capture all relevant scales
up to the Nyquist frequency at once), however we get hope form the following introductory, finite sampling
example, which shows us intuitively that integration over orientations can already be sufficient for sharp
reconstruction.

Example: Suppose we construct a discrete orientation score with only 4 orientations, up, down left and
right, constructed with the following discrete oriented wavelet ψ : Z× Z→ R, given by

ψ[x1, x2] =


1 if (x1, x2) ∈ {(0, 0), (1, 0)}
−1/3 if (x1, x2) ∈ {(0, 1), (0,−1), (−1, 0)}
0 else ,

see Figure 5. Then reconstruction of the original discrete image f : Z × Z → R from its orientation score
is done by integration over all directions.

f [x1, x2] =
1

4

4∑
k=1

U4
f [x1, x2, eikπ/2]. (28)

1.2 Reproducing Kernel Spaces and Continuous Wavelet Transforms

Before we formulate the main theorem (Theorem 2) from which we can quantify the stability of the
transformations between image and orientation score, we give some short explanation on reproducing
kernel Hilbert spaces (also called ‘functional Hilbert spaces’, as they consist of true functions and not
function classes), which is necessary to read and understand the theorem. The reader must keep in mind,
that although the Lemmas below hold in a more general setting, we shall be concerned with the space of
orientation scores of 2D images which means that we shall soon consider the following setting:

Index set : I = SE(2),
Reproducing kernel: K(g, h) = (Ugψ,Uhψ)L2(R2).

(29)

5 which are not to be confused with the more familiar Euclidean coherent states constructed from the irreducible
representations of the Euclidean motion group onto L2(S1), cf. [2]p.219-220.
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1.2.1 General Unitarity and Sampling Results on Reproducing Kernel Hilbert Spaces

A reproducing kernel Hilbert space is a Hilbert space consisting of complex valued functions on an index
set I on which the point evaluation δa, given by δa(f) = f(a) is a continuous linear functional for all a ∈ I.
This means that δa(fn) = fn(a) → δa(f) = f(a) for every sequence {fn} in H which converges to f ,
fn → f . It is not difficult to show that a linear functional on a normed space is continuous if and only if
it is bounded.

Exercise 3 Prove the previous statement.

So δa is a continuous linear functional if and only if there exists a constant Ca such that |f(a)| ≤
Ca‖f‖H . For example, the spaces L2(Rd) are not functional Hilbert spaces, but the well known first order
Sobolev space H1(R) is such a functional Hilbert space.

If H is a functional Hilbert space, then δa is a continuous linear functional, so that by the Riesz
representation theorem it has a Riesz representative Ka ∈ H such that

f(a) = δa(f) = (Ka, f)H ,

for every a ∈ I. The function K : I× I→ C given by

K(a,b) = (Ka,Kb)H = Kb(a)

is called reproducing kernel, because of its reproducing property. Therefore, ‘functional Hilbert spaces’ are
also called ‘reproducing kernel Hilbert spaces’.
An important general observation is that the span 〈{Km | m ∈ I}〉 must be dense in the reproducing kernel
Hilbert space. Indeed if f ∈ H is orthogonal to all Km one has f = 0.

Exercise 4 (Examples of reproducing kernel spaces)

a.) Show that the space of bandlimited 2D images (on a square [−L,L]× [−L,L])

LBAND,L2 (R2) := {f ∈ L2(R2) | supp{Ff} ⊂ [−L,L]× [−L,L]}

is a reproducing kernel space and show that its reproducing kernel equals:

KL(a,x′) = 2πF−1[1[−L,L]×[−L,L]](a− x′) = 4L2 sinc(L(x− x′)) · sinc(L(y − y′)),

with a = (x, y), x′ = (x′, y′) and sinc(v) = sin v
v for 0 6= v ∈ R, and sinc(0) = 1.

b.) Let us consider L = π for simplicity in the following sampling theorem. Show that any f ∈ LBAND,π2

can be exactly reconstructed from its values on a discrete grid (by ‘sinc-interpolation’):

f(a) =

∫
R2

f(x′)Kπ(a,x′) dx′ =
∑
n∈Z2

f(n)
Kπ(a,n)

4π2
.

(hint: f(n) equals the n-th Fourier series coefficient of Ff |(−π,π)×(−π,π).)

c.) Show that the space of disk-limited images L%2(R2), recall (5), is a reproducing kernel Hilbert space,
and show that its reproducing kernel equals

K(x,x′) = F−1[1B0,% ](x− x′) = J1

(
‖x− x′‖

%

)
%

‖x− x′‖

d.) Derive the reproducing kernel of the first order Sobolev space H1(R) with inner product

(f, g)H1(R) = (f, g)L2(R) + (Df,Dg)L2(R),

with generalized derivative D.
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In general the reproducing kernel in a functional Hilbert space is a function of positive type on I, i.e.

n∑
i=1

n∑
j=1

K(mi,mj)cicj ≥ 0 , for all n ∈ N, c1, ..., cn ∈ C, m1, ...,mn ∈ I.

Conversely, as Aronszajn pointed out in his paper, cf. [4], a function K of positive type on a set I uniquely
induces a reproducing kernel Hilbert space consisting of functions on I with reproducing kernel K. Hence-
forward we shall be concerned with the following sort of functions of positive type

K(mi,mj) = (φmi , φmj )H ,

where typically, we consider H = L2(R2) so that (·, ·)H denotes the L2-inner product.

Definition 10 We denote this unique reproducing kernel Hilbert space consisting of functions on index
set I with reproducing kernel K by CI

K .

Next we explain some basics on the formal norm on CI
K and a sampling theorem. For further details,

see [4,57]. The span 〈{Km | m ∈ I}〉 is an inner-product space with respect to the following inner product l∑
i=1

αiKmi ,
n∑
j=1

βjKmj

 :=
l∑
i=1

n∑
j=1

αiβj K(mi,mj).

By taking the completion of this inner product space we get the Hilbert-space CI
K , carrying the norm:

‖Φ‖2CI
K

= sup



∣∣∣∣∣ l∑
j=1

αjΦ(mj)

∣∣∣∣∣
2

l∑
k,j=1

αkαjK(mk,mj)

| l ∈ N, αj ∈ C,mj ∈ I,
l∑

k,j=1

αkαjK(mk,mj) 6= 0


, (30)

which is unfortunately rather intangible from the engineering point of view (due to its technical dual norm
formulation). In our case of interest (29) we will derive a tangible description of these inner products.

Lemma 3 Let K be a function of positive type on I and F a complex-valued function on I. Then the
function F belongs to CI

K if and only if there exists a constant γ > 0 such that

∣∣∣ l∑
j=1

αjF (mj)
∣∣∣2 ≤ γ l∑

k,j=1

αkαjK(mk,mj), (31)

for all l ∈ N and αj ∈ C, mj ∈ I, 1 ≤ j ≤ l.

Proof: See [57, Lemma 1.7, pp.31].

Remark 4 From Lemma 3 it follows that the norm on CI
K is given by (30) via dual norm construction.

Lemma 4 Let V = {φm | m ∈ I} be a subset of H such that its linear span is dense in H. Define the
function K : I× I→ C by

K(m,m′) := (φm, φm′)H .

Then the transform W : H 7→ CI
K defined by

(W[f ])(m) = (φm, f)H (32)

is a unitary mapping, i.e. ‖W[f ]‖CI
K

= ‖f‖H for all f ∈ H.
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Proof First we show thatWf ∈ CI
K for any element f ∈ H = 〈V 〉 and thatW is bounded (and therefore

continuous). If f ∈ H then

∣∣∣ l∑
j=1

αj
(
Wf

)
(mj)

∣∣∣2 =
∣∣∣ l∑
j=1

αj(φmj , f)H

∣∣∣2 =
∣∣∣( l∑
j=1

αjφmj , f
)
H

∣∣∣2

≤
∥∥∥ l∑
j=1

αjφmj

∥∥∥2

H
‖f‖2H =

( l∑
k,j=1

αkαjK(mk,mj)
)
‖f‖2H ,

for all l ∈ N, α1, ..., αl ∈ C, and m1, ...,mn ∈ I. So Wf ∈ CI
K by Lemma 3 and ‖Wf‖2CI

K
≤ ‖f‖2H , by

(30). Next we prove that W is an isometry. Because (φm, φm′) = K(m,m′), W maps a linear combination∑
i αiφmi onto the linear combination

∑
i αiK(·,mi). So W(〈V 〉) = 〈{K(·,m)|m ∈ I}〉. Moreover, it maps

〈V 〉 isometrically onto 〈{K(·,m)|m ∈ I}〉, because(
W
(∑

i

αiφmi

)
,W
(∑

j

βjφm′j
))

CI
K

=
(∑

i

αiK(·,mi),
∑
j

βjK(·,m′j)
)
CI
K

=
∑
i,j

αiβjK(mi,m
′
j) =

∑
i,j

αiβj(φmi , φm′j )H .

Since 〈V 〉 is dense in 〈V 〉 and W is bounded on H = 〈V 〉 it follows that W is an isometry. Furthermore,
W[〈V 〉] is dense in CI

K . So W is also surjective and therefore unitary. �

Also, a sampling theorem comes for free on the reproducing kernels spaces, that is, again, as long
as the span of {φm | m ∈ I} is dense in H.

Lemma 5 Let H be a separable Hilbert space, such that V = {φm | m ∈ I} is a frame in H. Let {mn}n∈N
be a sequence in I such that {φmn | n ∈ N} is an orthogonal basis in H. Set K(m,m′) = (φm, φm′). Then

f(m) =
∑
n∈N

f(mn)
K(m,mn)

K(mn,mn)
,

for all m ∈ I and f ∈ CI
K . Moreover,

‖f‖2 =
∑
n∈N

|f(mn)|2

K(mn,mn)
, for all f ∈ CI

K .

Proof By Theorem 4, the corresponding map is unitary, and therefore the set {Kmn | n ∈ N} is an
orthogonal basis for CI

K . Let f ∈ CI
K , then

f =
∑
n∈N

βnKmn =
∑
n∈N

(Kmn , f)CI
K√

K(mn,mn)

Kmn√
K(mn,mn)

=
∑
n∈N

f(mn)
Kmn

K(mn,mn)
.

Therefore the second statement follows. For the first statement take the inner product with Km. �

1.3 A Unitary Map from the Space of Images onto The Space of Orientation Scores

By applying Lemma 4 to the case

H = L2(R2), I = R2 o S1 ≡ SE(2) = R2 o SO(2), and V = {Ugψ | g ∈ G}, (33)

which is dense in L2(R2) iff

0 < Mψ(ω) = (2π)

2π∫
0

|F(ψ)(ρ cosϕ, ρ sinϕ)|2 dϕ <∞ , (34)

almost everywhere on R2, and by characterizing the inner product on the space CG=R2oS1

K we obtain:



16 R. Duits, E.J. Bekkers

Theorem 2 (Unitarity Result for Orientation Score Transform )
Let ψ ∈ L1(R2)∩L2(R2) be chosen such that Mψ > 0. The space of orientation scores equals the Reproducing

Kernel Hilbert Space CR2oS1

K . The inner product on CR2oS1

K is characterized by

(U, V )Mψ
= (TMψ

[U ], TMψ
[V ])L2(R2oS1)

where

[TMψ
[U ]](b, θ) = F−1

[
ω 7→ |(2π)

d
2Mψ(ω)|−

1
2 F [U(·, eiθ)](ω)

]
(b), (35)

characterized by Mψ given by (34).

The transform Wψ : L2(R2)→ CR2oS1

K between image f and orientation score Wψf given by (3) is unitary
and

‖f‖2L2(R2) = ‖Wψf‖2Mψ
= (Wψf,Wψf)Mψ

,

f =W∗ψWψ[f ] = F−1

[
ω 7→

2π∫
0

F [Wψf(·, eiθ)](ω) F [Reiθψ](ω) dθ M−1
ψ (ω)

]
.

(36)

Proof First of all we note that each fixed θ-layer in the orientation score (recall (1)), i.e. the function
Wψf(·, θ) can be written as a convolution with the image f :

(Wψf)(b, θ) = (ψθ+π ∗ f)(b) for all b ∈ R2,

where we use short notation for the rotated kernel: ψθ(x) = ψ(R−1
θ x). Note also that ψθ+π(x) =

ψ(−R−1
θ x). Now, recall from part I that a convolution in the spatial domain corresponds to a direct

product in the Fourier domain: (F(f1 ∗f2))(ω) = (2π)
d
2Ff1(ω)Ff2(ω). Here we have d = 2, so we rewrite

(2π)−1(FWψf(·, θ))(ω) = F(ψθ+π)(ω) (Ff)(ω) (37)

By setting the special case (33) in Lemma 4 we know that Wψ maps L2(R2) unitarily onto CSE(2)
K . Now

by compactness of SO(2) and Fubini we can switch orders of integration and obtain by Plancherel theorem
for Fourier transform F : L2(R2)→ L2(R2) that:

‖Wψf‖2CSE(2)
K

= ‖f‖2L2(R2) = ‖Ff‖2L2(R2) =
∫
R2

|Ff(ω)|2Mψ(ω)
Mψ(ω) dω

= 2π
∫
R2

π∫
−π
|Ff(ω)Fψθ+π(ω)|2 dθ (Mψ(ω))−1dω

(37)
=

π∫
−π

∫
R2

∣∣∣FWψf(ω, eiθ) (2πMψ(ω))−
1
2

∣∣∣2 dωdθ

(35)
=

π∫
−π

∫
R2

|FTMψ
[Wψf ](ω, eiθ)|2 dωdθ

=
π∫
−π

∫
R2

|TMψ
[Wψf ](b, eiθ)|2 dbdθ

= ‖Wψf‖2Mψ
,

(38)

for all f ∈ L2(Rd). For U = Wψf one indeed has a finite norm ‖U‖2Mψ
< ∞ and all above integrals in

(38) converge6. �.

Consequences and Remarks:

6 In the general setting of Theorem 2 the reproducing kennel norm equals the Mψ-norm, but it is not equivalent to the

L2(R2 oS1)-norm (since for ψ ∈ L1(R2) function Mψ is a continuous function vanishing at infinity). This is in contrast to
the setting of Theorem 1 where U is assumed to be an unitary irreducible representation and where the reproducing kernel
norm was in fact the L2-norm. Recall from Lemma 2 that the representation U used for the orientation score transform
(3) is reducible.
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1. This theorem easily generalizes to d dimensional images, i.e. f ∈ L2(Rd), d = 2, 3, . . .. The only thing
that changes is that integration now takes place over SO(d) and the function Mψ becomes

Mψ(ω) = (2π)d/2
∫

SO(d)

|F(Rtψ)(ω)|2dµT(t) , (39)

where dµT (t) is the normalized Haar-measure of SO(d), which is the Fourier transform of

ψ̃(x) =

∫
SO(d)

(Rtψ̌ ∗ Rtψ)(x)dµT(t).

It can be shown that if ψ ∈ L1(R2), then Mψ and ψ̃ are continuous functions in L1(R) and thereby

vanishing at infinity. As a result(!) the ideal case Mψ = (2π)d/2 (in which case we would have Hψ =
L2(RdoSO(d)) and thereby (quadratic norm preservation between image and orientation score) cannot
be obtained unless one uses a Gelfand triple structure (just like Fourier transform) constructed by means
of the Laplace operator7, for details see Appendix A.

2. Theorem 2 easily generalizes to the discrete orientation group, i.e. G = TN o R2, where

TN = {eik∆θ |k ∈ {0, 1, . . . N − 1},∆ =
2π

N
}, for N ∈ N, (40)

by replacing integrations by discrete summation. Notice that the discrete orientation score UNf (b, eik∆θ)

of an image f ∈ L2(R2) is given by

UNf (b, eik∆) = (TbReik∆θψ, f)L2(R2) , k ∈ {0, 1, . . . N − 1},∆θ =
2π

N
.

and the discrete version of the function Mψ is Md
ψ(ω) = 2π

N

N−1∑
k=0

|F(Reik∆θψ)(ω)|2.

3. The function Mψ completely determines the stability of the forward and backward transformation. In
practice (due to sampling) we work with ball-limited images (5). If we restrict the wavelet transforma-
tion to the space of ball-limited images L%2(R2), then we can define a condition number (with respect
to quadratic norms on the space of images and the space of orientation scores), [18]. This condition
number tends to 1 when Mψ tends to a constant function on the relevant part of the spectrum say
1B0,% . We will call wavelets with the property that Mψ|B0,%

≈ 1 proper wavelets (a formal definition

soon follows in Definition A) as they guarantee a stable reconstruction. For these type of wavelets we
could as well use the approximative reconstruction formula8

f ≈ ψ̃ ∗ f = F−1

ω 7→ 1

2π

2π∫
0

F [Wψf(·, eiθ)](ω) F [Reiθψ](ω) dθ

 . (41)

4. In Eq.(33) and (34) and in the above theorem, one could also restrict one-self to ball-limited images and
ball-limited wavelets from the beginning, so that all integrals in (38) take only place on B0,% and so that
the spatial parts of the space Hψ are ball-limited. This simplifies, but is also a little bit unconvenient
as ψ ∈ L1(R2) ∩ L%2(R2) implies Fψ(ω) vanishes continuously towards the boundary ρ = ‖ω‖ → %,
which would not match our definition of proper wavelets (cf. Definition A below).

7 This commutes with the left regular actions Ug for all g ∈ Rd o SO(d).
8 We stress that even if Mψ 6= 1 stability is still manifest. The only requirement on Mψ is that it remains overal finite

and non-vanishing. Recall that in general one has to use (36) for exact reconstruction.
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1.4 Quantification Stability of the Transform between Images and Orientation Scores

In this section we will formally quantify stability of the transforms between images orientation scores.
There we will also include the cases where approximate reconstruction is performed by integration over
angles only. Furthermore, from the engineering point of view imposing L2-norms on domain and range (for
condition numbers) seems to be a more fair way of quantifying stability (rather than imposing a kernel
dependent reproducing kernel norm on the space of orientation scores). We first provide some preliminary
definitions.

Definition 11 (The condition number) Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be two normed vector spaces.
Let A : V →W be an invertible linear map. Then

cond(A) := ‖A‖‖A−1‖ := sup
0 6=v∈V

‖Av‖W
‖v‖V

sup
0 6=w∈W

‖A−1w‖V
‖w‖W

.

If A is injective (but not surjective) then we define

cond(A) := sup
0 6=v∈V

‖Av‖W
‖v‖V

sup
0 6=v∈V

‖v‖V
‖Av‖W

.

Definition 12 (The coupled space Rd o Sd−1 of positions and orientations, d ∈ {2, 3}).
Let a ∈ Sd−1 denote an a priori reference axis.

For d = 2, our default is a = (1, 0)T .

For d = 3, our default is a = (0, 0, 1)T .
(42)

Let us denote the action of the rotation-translation group SE(d) = Rd o SO(d) onto set Rd × Sd−1 by

g � (x,n) = (b, R)� (x,n) := (Rx + b, Rn) .

Then two rotations and translations g1 and g2 are called equivalent if

g1 ∼ g2 ⇔ g1 � (0,a) = g2 � (0,a). (43)

This boils down to the following partition of equivalence classes (left-cosets) in SE(d):

g1 ∼ g2 ⇔ g−1
1 g2 ∈ H (44)

where H := {0} × Stab{a} ≡ {0} × SO(d− 1). This partition of equivalence classes is denoted by9

Rd o Sd−1 := SE(d)/H ≡ SE(d)/({0} × SO(d− 1)). (45)

Similar to Sd−1 = SO(d)/SO(d − 1) we denote the elements of Rd o Sd−1 by (x,n). Keep in mind that
every element (x,n) is a class of roto-translations {(x, Rn) | with Rn ∈ SO(d) s.t. Rna = n}.

Exercise 5 Verify that the equivalence relation in (43), is the same as the equivalence relation in (44).

Definition 13 (proper wavelets) Let us set a priori bounds10 δ,M > 0, 1� ε > 0,
(in practice we choose δ = 1

8 and M = 1.1 and ε = 0.01).

Then, a wavelet ψ ∈ L2(Rd) is called a proper wavelet if

1.) ψ ∈ L1(Rd),

2.) ψ(R−1x) = ψ(x) for all R ∈ Stab(a) ⊂ SO(d),

3.) ∀ω∈B0,% : δ ≤Mψ(ω) :=
∫

Sd−1

|Fψ(R−1
n ω)|2 dσ(n) ≤M.

(46)

9 Formally speaking Sd−1 is not a group, and the use of the semi-direct product symbol in the left-hand side of (45)
is questionable, in contrast to its use in the righthand side. Nevertheless, the notation is convenient and the reader must
keep in mind (45) is just our definition.
10 In practice we choose the default values δ = 1

8
and M = 1.1 and ε = 0.01 and note that it is actually the ratio M

δ
that determines the condition number. It is just that it is a convenient choice to set the upper bound close to 1.
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If moreover, one has

4.) ∃ 1
2
%<%0<%

∀ω∈B0,%0
: Nψ(ω) :=

∫
Sd−1

Fψ(R−1
n ω) dσ(n) ∈ [1− ε, 1 + ε],

then we speak of a proper wavelet with fast reconstruction property, cf. (47).

Remark 5 The 1st condition ensures that its Fourier transform is continuous, [66, Thm. 7.5]. The 2nd
condition allow for an appropriate definition of an orientation score rather than a rotation score, see
the next definition. The 3rd condition ensures invertibility and stability of the (inverse) orientation score
transform. The 4th condition, allows us to use of the approximate reconstruction by integration over angles
only:

f(x) ≈
∫

Sd−1

Wψf(x,n) dσ(n). (47)

Exercise 6

a. Show that the 2nd condition in (46) implies that

∀R∈SO(d)∀ω∈Rd : ψ̂(Rω) = ψ̂(ω),

where ψ̂ = Fψ.
b. Show that the 2nd condition in (46) indeed implies that the choice of Rn ∈ SO(d) such that Rna = n

does not affect the defined continuous functions Mψ : Rd → R+, Nψ : Rd → R+.

Remark 6 Formally we have by (39), the fact that StabSO(d)(a) ≡ SO(d−1),’ and the symmetry require-

ment that Mψ(ω) = (2π)
d
2 µ(SO(d−1))

∫
Sd−1

|ψ̂(RTnω)|2dσ(n). Nevertheless in the 3rd item we omit the

scalar multiplication before the integral in (46) to keep thing simple. Note to this end that a constant
scalar multiplication of the transform Wψ and/or Mψ is relevant both for stability and condition numbers.

Definition 14 For proper wavelets ψ ∈ L2(Rd)∩L1(Rd), we constrain the domain of our wavelet transform
to ball-limited images L%2(Rd), and we define the orientation score transform

W̃ψ : L%2(Rd)→ L2(Rd o Sd−1)

in a well-posed manner by

W̃ψf(b,n) = (U(b,Rn)ψ, f)L2(Rd) (48)

for all ball-limited images f ∈ L%2(Rd), where the rotated and translated wavelet is given by

U(b,Rn)ψ(x) = ψ(R−1
n (x− b)),

and where Rn ∈ SO(d) denotes any rotation that maps reference axis a onto n.

Definition 15 Let ψ ∈ L2(Rd) ∩ L1(Rd) be a proper wavelet (which is axially symmetric around a).
Let us denote the concatenation of the orientation score transform and approximative reconstruction by
integration over Sd−1 only, by operator Aψ : L2(Rd)→ L2(Rd) be given by

(Aψf)(x) =

∫
Sd−1

Wψf(x,n) dσ(n).
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Theorem 3 (Stability of Orientation Score Transform)
Let ψ ∈ L%2(Rd) be a proper (so axially symmetric) wavelet. Then the condition number of the orientation
score transform mapping

W̃ψ : L%2(Rd)→ L2(Rd o Sd−1)

equals
(cond(W̃ψ))2 = ‖Mψ‖L∞(B0,%) · ‖M

−1
ψ ‖L∞(B0,%).

where B0,% = {ω ∈ Rd | ‖ω‖ ≤ %} denotes the ball in the frequency domain with radius % > 0. The

condition number cond(Wψ) of Wψ : L%2(Rd)→ CSE(d)
K equals 1. The condition number of the orientation

score transform concatenated with reconstruction by integration over Sd−1 only equals:

cond(Aψ) = ‖Nψ‖L∞(B0,%) · ‖N
−1
ψ ‖L∞(B0,%).

Exercise 7 Verify that the 2nd condition in (46) is both sufficient and necessary for a well-posed definition

of W̃ψf : Rd o Sd−1 → C for all ball-limited (grayscale) images f ∈ L%2(Rd).

Exercise 8 (Proof of Theorem 3)

a.) Show that for any multiplier operator Mm : L2(B0,%) → L2(B0,%), given by Mmf = mf with a
continuous multiplier m : B0,% → R+, the operator norm ‖Mm‖ equals the maximum value that m
attains on compact set B0,%.

b.) Let ψ ∈ L%2(R2) be a proper wavelet. Show that for all f ∈ L%2(R2) one has

‖W̃ψf‖2L2(R2oS1) = (2π)2

∫
R2

Mψ(ω) |(Ff)(ω)|2 dω <∞

with Mψ(ω) =
π∫
−π
|Fψ(R−1

θ ω)|2 dθ.

c.) Provide a detailed proof of the above theorem for d = 2.
d.) Provide a detailed proof of the above theorem for d = 3.

Remark 7 (storing the lowest frequencies seperately) In continuous wavelet theory it is common to
separately store very low frequency components separately (as they represent average value and very global
variations which appear at scales much larger than the elongated structures of interest in the image), see
e.g.[70,56]. This yields a vector valued transform f 7→Wψf , with a vector valued wavelet

ψ = (ψ0, ψ1)T with ψ̂0 = Ĝsρ ψ̂, ψ̂1 = (1− Ĝsρ)ψ̂, (49)

with Ĝsρ(ω) = e−sρ‖ω‖
2

, sρ > 0, whose stability can be analyzed in a similar way as in the above theorem.
For details see Appendix B.

1.5 Working with a Finite Number of Orientations is Simple to include: Proper Wavelet Sets

Instead of working on SE(d) one may choose to work on sub-groups that use only a finite number of
orientations. For SE(2) = R2 o S1, one can work with SE(2, No) = {(x, θ) ∈ SE(2) | θ = θk = k

No
2π} via

equidistant sampling while identifying eiθ ↔ θ Mod 2π:

θk =
k

No
2π, for k = 0, . . . , No − 1 ∈ N.

For SE(3) (where the subgroup property is much more restrictive, see the exercise below) one may consider,
only those rotations that map the vertices of the icosahedron onto each other. Not much changes to the
theory so far, as one just replaces the integrals over Sd−1 by summations. Even for d = 3 one may drop the
formal group constraint (as it is not crucial for reconstruction and stability) and work with orientations
that arise by tessellations of the icosahedron [18] while using (spherical Harmonic) interpolation [48].
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It is worth noting that a very interesting formal relation with inverse Fourier Transform on discrete
subgroups on SE(d), cf. [42], similar to the full continuous setting [24, App.A], which we pursue in the
next section, only applies to the cases where discrete subgroups of SO(d) are used. Despite that represen-
tation theory of semi-discrete subgroups of SE(d) is mathematically interesting, we do not need it in our
framework.

Exercise 9 (Limited discrete subgroups of SO(3) and semi-discrete Subgroups of SE(3))

a.) Show that on a convex regular solid in R3 with n-gon faces (so that we have n-points per face) one has

2π − r(n− 2)π/n > 0,

where r is the amount of faces meeting at every vertex.
hint: the above expression is known as ‘the angular defect’11

b.) Show that the largest platonic solid is the icosahedron with V = 12 vertices, F = 20 faces and
E = V + F − 2 = 30 edges.

c.) Determine the subgroup SE(3, NR) = R3 o SO(3, NR), with SO(3, NR) denoting the finite group of
NR = 60 rotations that map the vertices of the icosahedron onto itself.

Let {ni}Noi=1 be an almost uniform sampling on Sd−1. For d = 3 such almost uniform sampling can be
computed using:

– an electrostatic repulsion model, where a given number No of charged particles are placed on a sphere
such that a cost (reflecting the total amount of magnitudes of electrostatic repulsion forces) is mini-
mized, see for example [14].

– a higher order tesselation of the icosahedron.

Assume we have a number No of orientations V = {n1,n2, ...,nNo} ⊂ Sd−1, and define the discrete
invertible orientation score Wd

ψ[f ] : Rd × V → C by the correlations

(Wd
ψ[f ])(x,ni) = (ψni ? f)(x) =

∫
Rd
ψni(y − x) f(y) dy. (50)

The exact reconstruction formula is in the discrete setting given by

f(x) = ((Wd
ψ)−1[Wd

ψ[f ]])(x) = F−1

[
(Md

ψ)−1F
[
x̃→

No∑
i=1

(ψ̌ni ?W
d
ψ[f ](·,ni))(x̃)∆i

]]
(x), (51)

with ∆i the discrete spherical area measure which for reasonably uniform spherical sampling can be

approximated by ∆i ≈ µ(Sd−1)
No

(otherwise one could use more accurate approximations [27, Eq.83]), and

Md
ψ(ω) =

No∑
i=1

∣∣∣ψ̂ni(ω)
∣∣∣2∆i. (52)

Again, an exact reconstruction is possible iff 0 < δ ≤Md
ψ(ω) ≤M <∞ and we have L2-norm preservation

for our transform between image and orientation score when Md
ψ=1. Again, for the wavelets for which

Nd
ψ =

No∑
i=1

ψ̂ni(ω)∆i ≈ 1, (53)

the reconstruction can be simplified by a summation over orientations

f(x) ≈
No∑
i=1

Wd
ψ[f ](x,ni)∆i. (54)

For this reconstruction by summation we can analyze the stability via the condition number of the mapping
that maps an image f ∈ L%2(R3) to an orientation integrated score

Adψ(f) :=

No∑
i=1

(
ψni

? f
)
∆i, (55)

11 It can be shown that the angular defect equals 4π over the total number of vertices of the platonic solid
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with a finite ‘uniform’ spherical sampling {ni}Noi=1, s.t.
No∑
i=1

∆i = µ(Sd−1) = (2π)
d
2

Γ (d/2) . It has condition number

cond(Adψ) =

max
ω∈B0,%

Nd
ψ(ω)

min
ω∈B0,%

Nd
ψ(ω)

,

which follows along the same lines as for the fully continuous setting (Theorem 3). Akin to Definition 13 for
the continuous case, the reconstruction properties of a set of filters is captured in the following definition:

Definition 16 (proper wavelet sets) Let us set a priori bounds12 δ,M > 0, 1� ε > 0.
(e.g. δ = 1

8 ,M = 1.1, ε = 0.01).

Let % be the maximum frequency radius of our ball-limited image data13.
Then, {ψni | i = 1, . . . , No} with an almost uniform spherical sampling

with corresponding disjoint surface areas ∆i, such that
∑No
i=1∆i = µ(Sd−1) = (2π)

d
2

Γ (d/2) is called a proper
wavelet set if

1.) ψ ∈ L1(Rd) ∩ L2(Rd),

2.) ψ(R−1x) = ψ(x) for all R ∈ Stab(a) ⊂ SO(d),

3.) ∀ω∈B0,% : δ ≤Md
ψ(ω) :=

No∑
i=1

|ψ̂ni(ω)|2∆i ≤M,

If moreover, one has

4.) ∃ 1
2
%<%0<%

∀ω∈B0,%0
: Nd

ψ(ω) :=
No∑
i=1

ψ̂ni(ω) ∆i ∈ [1− ε, 1 + ε],

then we speak of a proper wavelet set with fast reconstruction property, cf. (47).

2 Proper 2D Wavelets resp. 2D Admissible Wavelets and their Connection to (inverse)
Fourier Transform on SE(2) resp. SIM(2)

So far we presented a for the application relevant summary of results of our previous theory on invertible
orientation scores. A natural question that arises to the reader is how does the invertibility of transform
Wψ given by (

R2 3 (x, y) 7→ f(x, y) ∈ R
)
→ (SIM(2) 3 g 7→Wψf(g) = (Vgψ, f) ∈ C) ,

relate to the irreducibility of the underlying representation V, recall (24). Secondly, the question arises
how this relates to the fact that we must set14 Mψ = 1B0,% (recall (34) and (36) to guarantee well-posed
(ball-limited) images reconstruction of the transform Wψ, given by(

R2 3 (x, y) 7→ f(x, y) ∈ R
)
→
(
SE(2) 3 g 7→ W̃ψf(g) = (Ugψ, f) ∈ C

)
,

by means of its L2-adjoint (W̃ψ)∗. In this section we provide a brief answer to these important questions.
Although the early works of Grossmann et al. [44], [2], are mostly based on decomposition of the

identity using extended versions of Schur’s lemma, an alternative and shorter answer to this question can
be deduced from the work by Hartmut Führ [40, ch:4] exploiting the relation between the transforms

Wψ : L2(R2)→ L2(SIM(2)), recall Eq. (23), and W̃ψ : L2(R2)→ L2(SE(2)), recall Eq. (48), and inverse
Fourier transforms on respectively the groups SIM(2) and SE(2). Here we will focus only on our specific
cases of interest and provide the explicit formulae for these cases.

12 In practice we choose the default values δ = 1
8

and M = 1.1 and ε = 0.01 and note that it is actually the ratio M
δ

that determines the condition number. It is just that it is a convenient choice to set the upper bound close to 1.
13 Typically % is close to the Nyquist frequency.
14 Or Mψ = 1 if one relies on distributional orientation score transforms in Appendix A.
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To this end we use the general identity: trace{a ⊗ b ◦ A∗} = (Ab, a), where A is some bounded linear
operator on a Hilbert space and a and b some vectors in the Hilbert space, where we define (a ⊗ b)(x) =

(b, x)a. As a result we rewrite the wavelet transform W
SIM(2)
ψ as

W
SIM(2)
ψ f(g) = (Vgψ, f)L2(R2) = trace{f ⊗ ψ ◦ (Vg)∗} =

∫
ŜIM(2)

trace{Af,ψ(σ)σ(g−1)}
dν
ŜIM(2)

(σ)

ν
ŜIM(2)

(V)

= 1
ν
ŜIM(2)

(V)
[F−1
SIM(2)

(Af,ψ)](g−1) ,
(56)

where ν
ŜIM(2)

denotes the Plancherel measure on the dual group ŜIM(2), consisting of all non-equivalent,

unitary, irreducible representations of the group SIM(2) and where

Af,ψ(σ) =

{
0 if σ 6= V
f ⊗ ψ if σ = V

So the Plancherel Theorem for Fourier transform on the group SIM(2) now yields

‖Wψf‖2L2(SIM(2)) =

∫
ŜIM(2)

|||Af,ψ(σ)|||2
dν
ŜIM(2)

(σ)

ν
ŜIM(2)(V)

= ‖f‖2L2(R2)
‖ψ‖2L2(R2)

1

ν
ŜIM(2)

(V)
,

where ||| · ||| denotes the Hilbert-Schmidt norm, which is defined on bounded operators A ∈ B(L2(R2))
acting on L2(R2) by means of

|||A|||2 = trace{A∗A} =

∞∑
k=1

‖Afk‖2, where {fk}∞k=1 is some orthonormal basis for L2(R2) ,

so in particular, the Hilbert-Schmidt norm of the tensor product f ⊗ ψ of ψ and f equals

|||f ⊗ ψ|||2 = ‖f‖2‖ψ‖2.

We conclude that the admissibility constant (18) equals

Cψ =
1

ν
ŜIM(2)

(V)
‖ψ‖2

and moreover, the unitarity of Wψ directly follows from the Plancherel theorem on SIM(2) and the fact

that V ∈ ŜIM(2).
Obviously, one would like to put the same kind of connection of transform Wψ : L2(R2)→ L2(SE(2))

and inverse Fourier transform on SE(2) but let us recall (from Lemma 2) a technical problem here: In
contrast to the representation V the representation U is reducible. Therefore it must be decomposed into
irreducible representations, i.e. U must be written as a direct integral of irreducible representations. This
is similar to the well-known Peter-Weyl theorem for compact groups, [68], but the technical problem is
that SE(2) is not compact giving rise to an over-countable set of irreducible representations requiring
direct integral decomposition (for details on these decomposition see [40, p.67-84]) rather than direct sum
decomposition. All unitary, irreducible representations, up to unitary equivalence, of SE(2) are given in [71]
and the ones with non-trivial dual Plancherel measure occur only oncein the direct integral decomposition
of U . They can be related to the dual orbits of SO(2) on R2 which coincide with rings in the Fourier
domain, using Mackey’s theory [55].

Now the theoretical rationale behind Mψ = 1B0,% , (recall (34) and (36), is that the kernel ψ must be

chosen with unit length in each irreducible subspace of L%2(R2) ∩ L1(R2), meaning that the L2-norm over
each fixed ring in the Fourier domain is 1 (note that Mψ(ω) only depends on the radius ρ = ‖ω‖) so that
each irreducible subspace of L2(R2)∩L1(R2) is unitarily mapped to each irreducible subspace of the space
of orientation scores R(Wψ) ⊂ L2(SE(2)).

Let us verify these statements on both the transformWψ between images and orientation scores and the
corresponding reducible representation U by explicit formulas. First of all we define the representations
Ũρ : SE(2) → B(L2(Sρ)), where B(L2(Sρ)) stands for all bounded operators on the space L2(Sρ) of
quadratic integrable function(s) (classes) defined on the sphere Sρ = {ω ∈ R2 | ‖ω‖ = ρ}, given by

ŨρgF (ρ cosϕ, ρ sinϕ) = ei(ρ cosϕ,ρ sinϕ)·(x,y) F (ρ cos(ϕ− θ), ρ sin(ϕ− θ)),

for all g = (x, y, eiθ) ∈ SE(2), F ∈ L2(Sρ).
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Exercise 10 Show that these representations are unitary equivalent to well-known unitary, irreducible
representations of SE(2), [71],[12, ch: 10.2], given by

Uρgφ(v) = e−iρ(x,v)φ((Rθ)
−1v), ρ > 0, φ ∈ L2(S1),v ∈ S1, g = (x, eiθ) ∈ SE(2), (57)

hint: Ũρg = Dρ ◦ Uρg ◦ D−1
ρ with dilation operator Dρ : L2(S1)→ L2(Sρ) given by Dρφ(v) = ρ−

1
2 φ(ρ−1v)

. Consider the dual orbit space S1\R2, where the dual orbits are given by Sρ = {ATω | A ∈ SO(2)},
with ρ = ‖ω‖, then we have the following direct integral decomposition

F ◦ Ug ◦ F−1 =

⊕∫
R+≡S1\R2

Ũρg dν(Sρ) ,

where the measure on the dual orbits by identification ρ ∈ R+ ≡ Sρ ∈ S1\R2 equals dν(Sρ) = ρ dρ.
Analogously to (56), we have

Wψf(g) = (Ugψ, f)L2(R2) = (
⊕∫

R+

Ũρg ρ dρFψ,Ff)L2(R2)

=
∞∫
0

((Ũρg ) Fψ|Sρ , Ff |Sρ) ρ dρ =
∞∫
0

trace
((
Ff |Sρ ⊗ Fψ|Sρ

)
◦ Ũρg−1

)
ρ dρ .

(58)

Now ρ 7→ Ũρ is injective into the dual group ŜE(2), since Ũρ is unitary equivalent to the unitary irreducible
representations (57). Moreover dν(Sρ) equals the restriction of the Plancherel measure to {Ũρ}ρ>0, [71],
so we see that (58) can be rewritten as

Wψf(g−1) = F−1
SE(2)(ρ 7→ Ff |Sρ ⊗ Fψ|Sρ)(g). (59)

Now by the Plancherel theorem on SE(2), [71], [12] (and R2) one has

‖Wψf‖2L2(SE(2)) =
∞∫
0

||| Ff |Sρ ⊗ Fψ|Sρ |||
2ρdρ =

∞∫
0

‖ Fψ|Sρ ‖
2
L2(Sρ)

‖ Ff |Sρ ‖
2
L2(Sρ)

ρdρ

‖f‖2L2(R2) = ‖Ff‖2L2(R2) =
∞∫
0

‖ Ff |Sρ ‖
2
L2(Sρ)

ρdρ ,
(60)

so indeed we have the following sufficient and necessary condition for L2-norm preservation:

W̃ψ =Wψ ⇔Mψ = 1B0,% ⇔ ‖ Fψ|Sρ ‖
2
L2(Sρ) = 1 for all % ≥ ρ = ‖ω‖ > 0,

where we recall the definition of Mψ (34) and where we note that

Mψ(ω) = ‖ Fψ|Sρ=‖ω‖ ‖
2
L2(Sρ) =

∫
S2

|Fψ(ρ cosϕ, ρ sinϕ)|2 ρ dϕ, with ρ = ‖ω‖, (61)

Moreover, for ψ ∈ L%2(R2) ∩ L1(R2), with Mψ = 1B0,% its continuous Fourier transform Fψ has equal

L2-norm over each dual orbit, implying that each irreducible subspace of L2(R2) ∩ L1(R2) given by

{f ∈ L%2(R2) ∩ L1(R2) | supp{Ff} ⊂ Sρ}

is unitarily mapped onto each irreducible subspace within R(Wψ) ⊂ L2(SE(2)).

Exercise 11 Study Appendix A and verify that exactly the same arguments (but now with % → ∞) as
above apply to proper distributional wavelets ψ ∈ H−I in distributional orientation score transforms.
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3 Construction of Proper Wavelets

3.1 Simple numeric ‘cake-wavelet’ approach relying on DFT

A class of 2D cake-wavelets, see [18,26], was proposed for the 2D orientation score transformation, which
are effective in various medical imaging applications [38,6].

We now generalize these 2D cake-wavelets to dD cake-wavelets, and thanks to the splitting in Ap-
pendix B, we no longer need the spatial window used there. Our cake-wavelets (which are proper wavelets
with reconstruction property), should fulfill a set of requirements:

1. The orientation score should be constructed for a finite number (No) of orientations.
2. The transformation should be invertible and reconstruction should be achieved by summation. There-

fore we aim for Nd
ψ ≈ 1. Additionally, to guarantee all frequencies are transferred equally to the orien-

tation score domain we aim for Md
ψ ≈ 1. The set should be a proper wavelet set with fast reconstruction

property (Def. 16)
3. The kernel should be strongly directional. Preferably, for d = 2 the kernels must be supported in a

cone within the Fourier domain in view of the SE(2)-uncertainty principle [18, ch:7.5], likewise the
SIM(2)-uncertainty principle [3].

4. The kernel should be ball-separable in the Fourier domain, i.e.,

(Fψ)(ω) = g(ρ) A

(
ω

‖ω‖

)
, with ρ = ‖ω‖ (62)

and as the wavelet ψ must be proper (recall Definition 13) it has a rotational symmetry around the
normalized reference-axis a, recall (42), we must have the form

A

(
ω

‖ω‖

)
= h

(
ω

‖ω‖ · a
)
. (63)

5. The kernel should be localized in the spatial domain, since we want to pick up local oriented structures.
6. The real part of the kernel should detect oriented structures and the imaginary part should detect

oriented edges. The constructed orientation score is therefore a complex orientation score.

Remark 8 (Some intuition on the design of cake-wavelets)
The intuitive idea is that for d = 2 covering pieces of cake fill up the entire cake of frequencies in the
Fourier domain. Recall to this end the role of function Mψ in Theorem 2. When one applies the same idea
by combining covering ‘ice-cones’ to create a ‘ball’ one does not get a real-part that is a line detector.
One rather gets a plane detector see Figure 7 or [18, fig.4.14]. To this end one must for d = 3 rely on a
Funk-Radon transform, that turns ‘icecones’ into ‘donuts’ that yield line-detecting real-parts. See Figure 8.
For the statement that the splitting in Appendix B allows us to cut on extra spatial windows, see Figure 9.

Exercise 12 (anisotropies in spatial domain and Fourier domain)

a.) Compute the Fourier transform of the 2D anisotropic Gaussian G(x) = 1
4πse

− ‖Λx‖2
4s with

Λ = diag(λ, λ−1) ∈ R2×2, with 0 < λ� 1, s > 0, and x = (x, y)T ∈ R2.

b.) Compute the Fourier transform of the 3D anisotropic Gaussian G(x) = 1

(4πs)
3
2
e−
‖Λx‖2

4s with

Λ = diag(λ, λ−
1
2 , λ−

1
2 ) ∈ R3×3, 0 < λ� 1, s > 0, and x = (x, y, z)T ∈ R3.

c.) How does this exercise relate to the above remark, and what you see in Figure 7 and Figure 8?

Remark 9 (Choice of radial function g and its decay ) To prevent numerical problems with the
inverse DFT after sampling in the Fourier domain it is best to aim at Mψ(ω) ≈ 1 for ‖ω‖ < %, where
% is close to the Nyquist frequency %N of the discretely sampled image. Because of the discontinuity at
‖ω‖ = %, which causes practical problems with the discrete inverse Fourier transform, we will use wavelets
ψ, with Mψ(ω) =MN

(
ρ2t−1

)
, N ∈ N, t > 0 and ρ = ‖ω‖ where

g(ρ) =MN

(
ρ2t−1

)
= e
−
ρ2

t
N∑
k=0

(
ρ2t−1

)k
k!

≤ 1, (64)
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Fig. 6 Plots of MN

(
ρ2/t

)
, with t =

2(γ%N )2

1 + 2N
for N = 5, 10, 15, 20, 25

where t denotes a scale parameter. To fix the inflection point close to the Nyquist frequency %N , say at
ρ = % := γ · %N with 0� γ < 1, we set

t = t∗ :=
2 %2

1 + 2N
(65)

in order to fix the bending point:

d2

dρ2
MN (ρ2t−1)

∣∣∣∣∣
ρ=%

= 0,

see Fig. 6). The function MN is a Gaussian function at scale t multiplied with the Taylor series of its
inverse up to a finite order 2N to ensure a slower decay. Therefore MN smoothly approximates 1 on the
domain ρ ∈ [0, %], see Figure 6. A wavelet ψ : R2 → C with Mψ(ω) = MN

(
‖ω‖2t−1

∗
)

is a proper wavelet
according to Definition 13. A simple alternative radial Fourier decay function that does a similar job is
given by

g(ρ) =
1

2

(
1− erf

(
ρ− %
σerf

))
, (66)

with erf(z) = 2√
π

∫ z
0
e−x

2

dx, and where σerf controls the slope of the error function, similar to N above.

3.1.1 The 2D case

We use polar coordinates ω = (ρ cosϕ, ρ sinϕ)T and set

ψ̂(ρ cosϕ, ρ sinϕ) = A(cosϕ, sinϕ) g(ρ), with

angular function A(cosϕ, sinϕ) = Bk

(
(ϕ Mod 2π)− π

2

sθ

)
, with angular stepsize sθ = 2π

No

and radial function g(ρ) given by (64) or by (66).

(67)

where No denotes the number of orientation we encode in the score, and where Bk denotes the kth order
B-spline given by

Bk(x) = (Bk−1 ∗B0)(x), B0(x) =

{
1 if −1/2 < x < +1/2
0 otherwise

. (68)

which are chosen because of their strictly local support and covering property, see Figure 10.
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Fig. 7 When directly setting orientation distribution A = Aaux as angular part of the Fourier transformed wavelet Fψ
we construct plate detectors. From left to right: Orientation distribution A = Aaux wavelet in the Fourier domain, the
plate detector (real part) and the edge detector (imaginary part). Orange: Positive iso-contour. Blue: Negative iso-contour.
Parameters used: L = 19, σθ = 0.25, σerf = 3, γ = 0.85 and evaluated on a grid of 51x51x51 pixels.

Anti-
symmetrize 

2D Cake-wavelets 

3D Cake-wavelets 

Line Detector 
[Re] 

Edge Detector 
[Im] 

IFT 

IFT 

IFT 

Edge Detector 
[Im] 

Tube Detector 
[Re] 

Funk 
Transform 

Fig. 8 Cake-Wavelets. Top 2D cake-wavelet given by (67). From left to right: Illustration of the Fourier domain coverage,
the wavelet in the Fourier domain and the real and imaginary part of the wavelet in the spatial domain. Bottom 3D
cake-wavelet given by (73). Overview of the transformations used to construct the wavelets from a given orientation
distribution. Upper part: The wavelet according to Eq. (75). Lower part: The wavelet according to Eq. (74). IFT: Inverse
Fourier Transform. Parameters used: L = 16, so = 1

2
(0.25)2, sρ = 2, σerf = 3, γ = 0.85 and evaluated on a grid of 81x81x81

pixels.
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Fig. 9 Coverage of the fourier domain before and after splitting according to Appendix B. Left: The different wavelets
cover the fourier domain. The ”sharp” parts when the cones reach the center however cause the filter to be non-localized,
which was solved in earlier works by applying a spatial window after filter construction. Right: By splitting the filter in
lower and higher frequencies we solve this problem. In the figure we show g(ρ)A(n(ϑ, ϕ)) for the different filters, before
applying the Funk transform to the orientation distribution A.

Fig. 10 The use of B-splines in the construction of cake wavelets. Plot showing quadratic B-splines (k=2), the sum of all

shifted B-splines add up to 1. The image in the upper right corner illustrates a Fourier cake wavelet ψ̃cake(ω) constructed
using quadratic B-splines and MN with N = 60, according to Eq. (67).

Exercise 13 We set a priori bounds δ,M > 0, 1� ε > 0 by our default parameters δ = 1
8 and M = 1.1.

Let ψ given by (67) with radial function (64) with N = 8 and with t = t∗ given by (65). It can be verified
(you do not have to show this) that for these settings one has

δ ≤ |g(ρ)|2 ≤M for all 0 < ρ < %.

a.) Compute B1(x) symbolically.
b.) Show (by induction w.r.t. k) that equality

∑
i∈Z

Bk(x− i) = 1 holds for all k ∈ N∪{0} and for all x ∈ R.

c.) Show (by induction w.r.t. k) that equality
∫
R
Bk(x)dx = 1 holds for all k ∈ N ∪ {0}.

d.) Show that ψ given by (67) is a proper wavelet with upper-bound Mnew = M ∗ ‖A‖2L2(S1) and with

lower-bound δnew = δ ∗ ‖A‖2L2(S1) (according to Definition 13).



DRAFT VERSION of PART II: Invertible Orientation Scores 29

3.1.2 The 3D case

In the 3D-case things get a little bit more complicated compared to the 2D case. First of all, the B-
splines on S1 do not straightforwardly generalize to B-splines on S2, and secondly choosing a sharp cone
in the 3D-Fourier domain as a point of departure, does not yield an appropriate 3D-cake wavelet with a
line-detecting real part, as can be seen in Figure 7.

We now need to find an appropriate angular part A for the cake-wavelets. First, we specify an auxiliary
orientation distribution Aaux : S2 → R+, which determines what orientations the wavelet should measure.
To satisfy requirement 3 this function should be a localized spherical window, for which we propose the
(truncated) spherical diffusion kernel centered around reference axis a = (0, 0, 1)T :

Aaux(n(ϑ, ϕ)) = GS
2

so (n(ϑ, ϕ)) = GS
2

so (n(ϑ, 0))

=
L∑
l=0

a0
l Y

0
l (θ, ϕ) =

L∑
l=0

e−s l(l+1)Y 0
l (0, 0)Y 0

l (ϑ, 0), 0 < L,
(69)

with so > 0 and n(ϑ, ϕ) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ). The parameter so determines the trade-off between
requirements 2 and 3, where higher values give a more uniform Md

ψ at the cost of less directionality.

Remark 10 Because of the exponential decay w.r.t. l in Aaux we can approcimate the true diffusion kernel
(where L→∞) when truncating at the smallest L such that a0

L/a
0
0 < 10−3 (e.g. L = 21 for so = 1

2 (0.25)2).

Remark 11 (basic properties spherical harmonics) Recall that the spherical harmonics {Yml }∞l=0,|m|≤l
were given by (6), and recall that they form on orthonormal basis for L2(S2) with the property

∆S2Yml = −l(l + 1)Yml , es∆S2Yml = e−l(l+1)sYml , and RRa,αY
m
l = eimαYml , (70)

from which the 2nd identity in (69) readily follows. They also form a complete orthonormal system w.r.t.
Funk transform

FA(n) =
1

2π

∫
Sp(n)

A(n′) ds(n′), (71)

where integration is performed over Sp(n) denoting the great circle perpendicular to n. In fact, one has

FYml = Pl(0) Yml , (72)

where we allow ourselves (sloppy) notation Yml (n(ϕ, ϑ)) := Yml (ϕ, ϑ).

Remark 12 In implementations, one truncates the spherical harmonics at L ∈ N which leaves
∑L
l=0(2l +

1) = (L + 1)2 coefficients. If one would start with an almost uniform spherical sampling {A(ni)}Noi=1 for
some square integrable A : S2 → C, then it is wise to choose the number of spherical harmonics a little less
than No to prevent both over-fitting and data-loss, when relying on the pseudo-inverse of the discretiza-
tion of the inverse discrete spherical harmonic transform to approximate the forward continuous (SHT)
Spherical Harmonic Transform (SHT (A))(l,m) = (Yml , A)L2(S2). For a short, self-contained explanation
on discretization of the SHT and its inverse see [27, ch:7.1].

Via our auxilary function Aaux like the spherical heat-kernel in (69) we construct our 3D cake-wavelets
in the spatial Fourier domain as follows. Note that one the expansion in spherical harmonics of auxiliary
function Aaux all rotated wavelets are computed and steered analytically without approximations.

Result 1. Let Aaux : S2 → R+ be an L1-normalized function mostly supported in a sharp convex cone
around the a-axis and symmetricaly around the a-axis (i.e the z-axis recall (42)). Then Aaux, together with
our function g(ρ) given by (64) or by (66), provides our wavelet ψ̂ in the Fourier domain via

ψ̂(ω) = g(ρ) (FAaux(nω) +Aaux(nω)−Aaux(−nω)) ,

with ω = ρ · nω = ρ · n(ϑ, ϕ) and ρ = ‖ω‖,
(73)

The real part of ψ is a tube detector given by

Re(ψ) = F−1 (ω 7→ g(ρ) · (FAaux)(nω)) . (74)
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The imaginary part of ψn is an edge detector given by

Im(ψ) =
1

i
F−1 (ω 7→ g(ρ) · (A(nω)−A(−nω))) . (75)

When expanding the angular part in spherical harmonics and choosing A = GS
2

so :

Aaux(n(ϑ, ϕ)) =
L∑
l=0

a0
l Y

0
l (ϑ, ϕ), with a0

l =

√
2l + 1

4π
e−l(l+1)so , (76)

we have the following wavelet in the Fourier domain

ψ̂(ω) = g(ρ) ·A(n(ϑ, ϕ)) := g(ρ) ·
L∑
l=0

c0l Y
0
l (ϑ, ϕ), (77)

and the coefficients a0
l of Aaux and col of the angular part A of ψ̂ relate via

c0l = Pl(0) a0
l + (1− (−1)l)a0

l . (78)

We obtain rotated versions of our filter via

ψ̂n(ω) = g(ρ) ·
L∑
l=0

l∑
m′=−l

c0l D
l
0,m′(γ, β, 0) Ym

′

l (ϑ, ϕ), (79)

As we do not have analytical expressions for the spatial wavelets ψn, we sample the filter in the Fourier
domain using Eq. (79) and apply an inverse DFT afterwards. For L > 0, N > 0 (or σ−1

erf ) sufficiently large
the wavelet ψ is a (steerable) proper wavelet with fast reconstruction property (Def. 13).

Exercise 14 (questions on the construction of 3D cakewavelets)

– Show that (78) follows by (73) and (69), (72).
– Show that the wavelets real part (74) and its imaginary part (75) follow by (73).
– See Figure 8. Why is the anti-symmetrization required in (75) and (73)?
– Show that the fast reconstruction property indeed holds for g(ρ) given by (66) and σ−1

erf sufficiently
large. hint:

g(ρ) = g(ρ) P0(0) = g(ρ)

∫
S2

A(n) dσ(n) = g(ρ)

∫
S2

Aaux(n) dσ(n) = Nψ(ω), ρ = ‖ω‖.

Lemma 6 Let ψ be a wavelet constructed via the procedure in Result 1. Then we have the bounds

1−
L∑
l=0

‖dl‖
√

2l + 1

4π
≤ Nd

ψ ≤ 1 +
L∑
l=0

‖dl‖
√

2l + 1

4π
, (80)

with dl = (dml )lm=−l and dml =
No∑
i=1

c0l ·∆i · Dl0,m(0, βi, γi).

Proof. First we expand function Nd
ψ in spherical harmonics:

Nd
ψ(ω) =

No∑
i=1

F [ψni ](ω)∆i = g(ρ)

No∑
i=1

hni(ϑ, ϕ)∆i

= g(ρ)
L∑
l=0

l∑
m′=−l

No∑
i=1

c0lD
l
0,m′(0, βi, γi)∆i︸ ︷︷ ︸
dm
′

l

Ym
′

l (ϑ, ϕ)

= g(ρ)

L∑
l=0

l∑
m′=−l

dm
′

l Ym
′

l (ϑ, ϕ) (81)
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Fig. 11 Inspection of the stability of the transformation for different values of so given a orientation distribution A = GS
2

so

and for No = 42. Left: Spherical plot of A and the angular part of polar separable function Nd
ψ and Md

ψ which gives insight

in whether we cover all orientations equally. Where closer to the ball means more equal coverage of all orientations. Right:
The upper and lower bounds of Nd

ψ . Comparison of the bounds according to Eq. (80) (filled line) and numerical results

(dashed line) of the bounds by a very fine sampling of the sphere (icosahedron of tessellation order 6).

We have g(ρ) = 1 for ρ = ‖ω‖ ≤ %, but we still need to quantify the angular part. We define YN
l =

(Y −ll , Y −l+1
l , . . . , Y l−1

l , Y ll ), so that

L∑
l=0

l∑
m′=−l

dm
′

l Ym
′

l (ϑ, ϕ) =
L∑
l=0

dl ·Yl(ϑ, ϕ) = Y 0
0 (ϑ, ϕ)c00 +

L∑
l=1

dl ·Yl(ϑ, ϕ) = 1 +
L∑
l=1

dl ·Yl(ϑ, ϕ) (82)

This varying component should remain small. We use Cauchy-Schwarz for each order l:∣∣∣∣∣
L∑
l=0

dl ·Yl(ϑ, ϕ)

∣∣∣∣∣ ≤
L∑
l=0

|dl ·Yl(ϑ, ϕ)| ≤
L∑
l=0

‖dl‖‖Yl(ϑ, ϕ)‖ =
L∑
l=0

‖dl‖
√

2l + 1

4π
, (83)

from which (80) follows.

See Fig. 11 for visual inspection of bounds of Md
ψ and Nd

ψ, and numerical results for the bounds of Nd
ψ.

Corollary 3 Given our analytical bounds (80) from Proposition 6 and No = 42, we can guarantee that our
set of wavelets from Result 1 sampled at {ni}Noi=1 is a proper wavelet set with fast reconstruction property
according to Def. 16 with ε = 0.05 when choosing parameter s0 ' 0.04.

In practice we have a proper wavelet set with fast reconstruction property already for smaller values
of so, as follows by the numeric computations in Figure 11 where we see that s0 ' 0.02 is already enough.

Exercise 15 (question on the construction of 3D proper wavelet sets)
Prove that for each N0 there exists a unique smin(N0) > 0 such that for all s > smin(N0) the set of
wavelets from Result 1 and verify Corollary 3.

In the two subsequent subsections, we will overcome the theoretical short-coming that we must
sample the cake-wavelets in the Fourier domain and apply an inverse DFT (iDFT) to get their represen-
tations on the spatial grid. We will consider two natural approaches for constructing proper wavelets that
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allow for a spatial analytic description in both spatial and Fourier domain (where one relies on inverse
continuous Fourier transform rather than iDFT):

A) proper wavelet expansion in the harmonic oscilator basis.
B) proper wavelet expansion in a modified (weighted) Zernike basis.

From the practical point of view, we will observe that:

– the harmonic oscillator basis approach, generalizes Kalitzin’s wavelet [52], but has some limitations
(especially when applying hard truncations) for local control of proper wavelets.

– the modified Zernike basis allows for a relatively simple analytic description of proper wavelets, whose
grid samplings are very close to the practical 3D cake-wavelets described in Result 1 above.

3.2 Analytic Approach relying on Expansion in Eigenfunctions of the Harmonic Oscillator

For control of the shape and the localization of proper wavelets ψ we must analyze in the spatial domain,
whereas for control of the stability/invertibility of the orientation score transform we need to analyze in
the Fourier domain. It is therefore, important to come up with a choice of basis in the Fourier domain that
has a simple counterpart in the spatial domain as well.

A natural idea here (inspired by Kalitzin’s distributional wavelet, see Exercise 19 in Appendix A), is
to use the Harmonic oscillator basis for this purpose. Especially in view of the Bochner-Hecke theorem,
cf. Appendix C, that allows us to easily transfer ball-coordinate expansions of wavelets from the spatial to
the Fourier domain and back.

Fourier transform F and the Harmonic oscillator operator −∆+ ‖x‖2 commute

F ◦ (−∆+ ‖x‖2) = (−∆+ ‖ω‖2) ◦ F ,

where we apply multipliers µ = ‖x‖2, ‖ω‖2 with their (unbounded) multiplier operators Mµ acting in
respectively the spatial and Fourier domain, and thereby they have a common basis of eigenfunctions.

3.2.1 The 2D case

In this subsection we will expand our wavelet into eigenfunctions of the 2D harmonic oscillator.
Note that L2(R2) = L2(S1)

⊗
L2((0,∞), rdr). Decompose L2(S1) into irreducible representations:

L2(S1) =
⊕
m∈Z
D(m) =

⊕
m∈Z
〈Ym〉 =

⊕
m∈Z
〈φ 7→ e−imφ√

2π
〉

Let {γmn}n∈N in L2((0,∞), rdr) be an orthonormal base for each m ∈ Z, then
(γmn ⊗ Ym)(r, φ) = γmn(r)Ym(φ) is an orthonormal base in L2(R2; rdr). As a result we can expand any
wavelet ψ ∈ L2(R2) in terms of this basis:

ψ(r, φ) =
∑
m∈Z

∞∑
n=0

γmn(r)Ym(φ)(γmn ⊗ Ym, ψ)L2(R2)

=
∑
m∈Z

ψm(r, φ) =
∑
m∈Z

gm(r)Ym(φ)
(84)

By the Bochner-Hecke Theorem, see Appendix C, the Fourier Transform F(ψ) of ψ ∈ L2(R2) is given by

F(ψ)(ρ cosϕ, ρ sinϕ) =
∑
m∈Z

g̃m(ρ)Ym(ϕ) ,

with g̃m ∈ L2(R2; rdr) given by g̃m(ρ) = ρ1/2Hm[r1/2gm(r)](ρ), where the unitary Hankel Transform
Hm : L2((0,∞)) → L2((0,∞)) is given by (150). Given such a wavelet ψ ∈ L2(Rd), the orientation score
Uf can be written

Uf (b, eiθ) = (Reiθ ψ̌ ∗ f)(b) = (Rei(θ+π)ψ ∗ f)(b) =
∑
m∈Z

(−1)m
e−imθ√

2π
(ψm ∗ f)(b) .
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Fig. 12 Radial basis functions hmn , left for m = 0 and middle for m = 1 and lighter gray for n = 0, 1, 2, . . .. Right, the

basis functions are effectively active on [0, Rmn), where Rmn =
√

2(2n+ |m|+ 1), as this equals the radius where the
total energy Emn = 2(2n + |m| + 1) equals the potential energy given by V (x) = r2. This is illustrated by joining the
graphs of hmn , m = 0, 1, n = 0, 1, 2 together with their corresponding energy levels and the graph of the potential V .

If the radial functions do not depend wildly on m, the wavelet will be directed along φ = 0. The real
part of the orientation score (constructed by a real valued wavelet which is even around φ = 0) reveals
elongated line structures, whereas the imaginary part (constructed by a real valued wavelet which is odd
around φ = 0) reveals elongated edge structures.

The function Mψ : R2 → R, which by theorem 3 completely determines the well-posedness of f ↔ Uf ,
is now given by

Mψ(ω) =
∫

SO(2)

|F(RRψ)(ω)|2dR

=
∑
m∈Z
|g̃m(ρ)|2 , with ρ = ‖ω‖ .

(85)

Expansion of ψ and Mψ in a Fourier Invariant Polar Base

Although equation (85) is of rather simple form, it still includes the non-trivial operator ρ−1/2Hmr1/2.
This unitary operator on L2((0,∞) ; r dr) has the following complete set of orthonormal eigenfunctions
hmn , for details see Appendix C and Figure 12,

hmn (r) =

(
2 n!

(m+ n)!

)1/2

rme−r
2/2L(m)

n (r2), r > 0 m ≥ 0 , (86)

For m < 0 we define hmn = h
|m|
n . Therefore, we expand ψ and expres Mψ in this angular-irreducible radially

Fourierinvariant basis, which are also the eigen functions of the 2D-harmonic oscillator15:

ψ(x) =
∑
m∈Z

∞∑
n=0

αnm (Ym ⊗ hmn ) (φ, r) ,

F [ψ](ω) =
∑
m∈Z

∞∑
l=0

(i)|m|(−1)n+mαnm (Ym ⊗ hmn ) (ϕ, ρ) ,

(Reiθψ)(x) =
∑
m∈Z

∞∑
n=0

αnm e+imθ (Ym ⊗ hmn ) (φ, r)

Mψ(ω) =
∞∑

m=−∞

∣∣∣∣ ∞∑
n=0

(−1)nαnm hmn (ρ))

∣∣∣∣2
=

∞∑
m=−∞

∞∑
n=0

∞∑
n′=0

(−1)n+n′αnmαn
′
mh

m
n (ρ)hmn′(ρ) .

(87)

Considering numerical expansions of typical local patches of elongated structures into this basis we notice
that for each |m| a soft (linear) cut-off in n is required, see Figure 13.

In the remainder of this section we will construct wavelets ψN1,N2
, with coefficients αnm = 0, for

|m| > N1 and n > N2, for fixed N1, N2 ∈ N, i.e.

ψN1,N2
=

N1∑
m=−N1

N2∑
n=0

αnm Ym ⊗ hmn

15 The self-adjoint operators F , RR and the harmonic oscillator ∆− ‖x‖2 commute and thereby they have a common
base of eigen functions which is indeed given by Ym ⊗ hmn .
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Fig. 13 Local expansion of a 33 × 33 pixel patch of an MRI-image showing a bifurcating bloodvessel in the retina. The
original image is left, the reconstruction with basis function up to |m| = 32 and n = 12 is in the middle, and the same
reconstruction linearly dampening higher m and n components is depicted on the right.

such that
MψN1,N2

(ω) =MN (ρ2), with N = N1 + 2N2 , ρ = ‖ω‖ (88)

where we recall that MN (ρ2) is given by (64). We consider (88) as an equation in variable ψ, determined
by its coefficients {αm}N1

|m|=0 = {{αnm}N2
n=0}

N1

|m|=0 and thereby we obtain ρ = ‖ω‖ > 0, if and only if

MψN1,N2
(ω) =MN (ρ2)⇔

N1∑
|m|=0

N2∑
n=0

N2∑
n′=0

(−1)n+n′
√

2n!
(n+|m|)!

√
2n′!

(n′+|m|)! ρ
2|m| L

(m)
n (ρ2)L

(m)
n′ (ρ2)=

N∑
q=0

ρ2q

q!

2N2∑
k=0

N1∑
|m|=0

α†mA
m
k αm ρ2(k+|m|) =

N∑
q=0

ρ2q

q! ,

(89)

where the (N2 + 1)× (N2 + 1) positive symmetric matrices Amk equal [Amk ]nn′ =
k∑
j=0

(amj )n (am(k−j))n′ , with

(amk )n =

{
(−1)n

√
2(n!)

(n+|m|)!d
m,n
k = (−1)n+k

√
2(n!)

(n+|m|)!
1
k!

(
n+|m|
n−k

)
if k ≤ n ,

0 else ,

where dm,nk = (−1)k

k!

(
n+|m|
n−k

)
equals the coefficient of ρ2k in L

(|m|)
n (ρ2). Now in the left hand side of (88) we

introduce the summation index q = |m| + k and assume α−m = αm ∈ RN2+1 for all m, (i.e. the wavelet
is symmetric around its direction) then we obtain

N∑
q=0

2N2∑
k=max{0,q−N1}

αTmA
q−k
k αq−k ρ

2q =
N∑
q=0

ρ2q

q! ⇔

2N2∑
k=max{0,q−N1}

αTq−kA
q−k
k αq−k ρ

2q = 1
q! , for q = 0, . . . , N ,

which are N + 1 = N1 + 2N2 + 1 equations for (N1 + 1)(N2 + 1) variables {αm}N1
m=0.

Example: The special case αnm = αmδn0

We take for each m the radial basis function that oscillates the least (i.e. n = 0). We get :

Mψ(ω) =
N∑
m=0

|αm|2(hmn (ρ))2 =MN (ρ2) , ρ = ‖ω‖ , (90)

The (up to phase factors unique) solution ψ0
N of (88) is now given by (αm = 1 for all m)

ψ0
N (x) =

N∑
m=0

1√
m!
ρme−

ρ2

2
e−imφ√

2π
= 1√

2π

N∑
m=0

(z)m√
m!
e−
|z|2
2

= 1√
2π

N∑
m=0

(−1
2 )m

( ∂
∂z )

m

√
m!

e−
|z|2
2 z = reiφ .

(91)
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This series converges uniformly on compacta, but not in L2-sense. The real part of this wavelet corresponds
to the wavelet first proposed by Kalitzin cf.[52] as a line detector in medical images. The imaginary part
is a good edge detector. For plots of the graph of wavelet ψN for several values of N , see figure 14. For
more plots and a comparison of the corresponding Mψ function to the Mψ function of some wavelet used
in practice for end-point detection see Figure 16.

Fig. 14 Top row: Left: 2 different viewpoint Plots of graphs ψ0
N=15, Right: 2 different viewpoint Plots of graphs ψ0

N=30.
Notice that the kernel becomes sharper and the wiggle-ring vanishes as N increases.

Practical aspects regarding this example:
The cutoff index N has a practical upper bound because of sampling. If N increases the reconstruction
will become better, but if we choose N to large the wavelet behaves badly along φ = 0, see Figure 15.

We stress that ψ0
N is essentially different than the proper wavelets constructed in the previous subsec-

tion. The simple approximative reconstruction from an orientation score Uf constructed by ψ0
N to image

f , by integration over the angles only, see (47), is not possible.

The size of the wavelet ψN0 can be controlled by dilation, x 7→ (DσψN0 )(x) = 1√
σ
ψN0 (x/σ). This does

effectMψ and fixing the bending-point, like in Figure 6) is the appropriate choice of choosing σ (or t = σ2).
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Fig. 15 Left: The graphs of the kernel ψ0
N (r, 0) cut off at N = 10, 20, 30, 40, 50 with σ = 1/8. Notice that the peaks move

out as m increases. The formula derived for ψ0
∞(r, φ = 0) = (8π)1/4√r +O

(
r−

3
2

)
see [18], is a good approximation (we

included the graph of r 7→ (8π)1/4√r). Right: The corresponding functions Mψ0
N

=MN → 1 as N →∞.

3.2.2 The 3D case

We expand our wavelets in the harmonic oscillator eigenfunctions restricting ourselves to eigenfunctions
which are symmetric around the z-axis: the spherical harmonics with m = 0. The wavelet then equals

ψ(x) =
∞∑
n=0

∞∑
l=0

αnl g
l
n(r)Y 0

l (θ, φ), ψ̂(ω) =
∞∑
n=0

∞∑
l=0

αnl (−1)n+lilgln(ρ)Y 0
l (ϑ, ϕ), (92)

with Yml the spherical harmonics, (r, θ, φ) and (ρ, ϑ, ϕ) spherical coordinates for x and ω respectively, i.e.

x = (r cosφ sin θ, r sinφ sin θ, cos θ),
ω = (ρ cosϕ sinϑ, ρ cosϕ sinϑ, ρ sinϕ),

(93)
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Fig. 16 Top row: left three images; Example of rotated line detector-wavelets ψ0
N in practice at different scales. Right

image: Example of kernel developed for catheter endpoint detection. Bottom row: The corresponding functions Mψ . Notice
that the line detectors have better Mψ and thereby induce a more stable exact reconstruction than the catheter endpoint
detector (most right image). The intensity profiles along the red-lines are given in Figure 15.

and gln given by

gln(ρ) = 1
ρE

l+ 1
2

n (ρ), with Eνn(ρ) =
(

2n!
Γ (n+ν+1)

) 1
2
ρν+ 1

2 e−
ρ2

2 L
(ν)
n (ρ2), (94)

where L
(ν)
n (ρ) is the generalized Laguerre polynomial and Γ (z) =

∫∞
0
tz−1e−tdt denotes the usual Gamma

function. We then choose the case with least radial oscillations αnl = αlδ0
n up to l ≤ L. If we then choose

αl =

√
Γ (l + 3

2 )

Γ (l + 1)
, (95)

for l ∈ {0, . . . , L} we again have that

Mψ(ω) =

∫
SO(3)

|ψ̂(R−1ω)|2dR = MN=L(ρ2) given by (64) (96)

smoothly approximates 1 in the Fourier domain as L→∞ and we get the following wavelet:

ψH(x) =
L∑
l=0

1√
l!
rle−

r2

2 Y 0
l (θ, φ). (97)

For this wavelet we have an analytical description in both spatial and Fourier domain. This wavelet,
however, again has some slight drawbacks: 1) the wavelet is not localized and has long spatial oscillations.
2) the wavelet is not centered. Both problems can be observed in Fig. 17. However, due to use if spherical
harmonics for the angular part of the wavelet it is nicely steerable, and allows for steerable implementations
of orientation scores, where rotations are exactly implemented (without interpolation). See Appendix D.

Exercise 16 Show by direct computations that (96) indeed holds.
hint: Apply Weyl’s Theorem for the compact group SO(3) (or alternatively Fourier theory on SO(3)), and
switch orders of integration and summation (Fubini’s theorem). For details see [18, ch:4.7.2].

3.3 Analytic Approach relying on Modified Zernike Basis Expansion (for d = 3)

Here we consider the case d = 3 only. The case d = 2 can be treated in a similar way.
The wavelets from the previous subsection had some unwanted properties such as poor spatial local-

ization (long oscillations) and the fact that the wavelets maximum does not lie at the wavelets center. A
possible explanation is that the basis used is orthogonal on the full L2(R3) space and not limited to the
ball in the Fourier domain, and truncation of this basis at the Nyquist frequency could lead to oscillations.
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ψH ψH(0, ·, ·)

Fig. 17 Wavelet expanded in the harmonic oscillator basis according to Eq. (97) for L = 20. Left 3D visualization showing
one negative (blue) and one positive (orange) isocontour. Right Cross section of the wavelet at x = 0.

An alternative basis that is a basis for the unit-ball is the Zernike basis which we can scale later to be a
basis in the Fourier domain for ball-limited images f ∈ L%2(R3), recall Eq. (5).

The 2D Zernike basis is often used in applications as optics, lithography and acoustics [1,10], since
efficient recursions can be used for calculating the basis functions and nice formulas exist for many trans-
formations among which the Fourier transform which is expressed in jinc functions. The basis is therefore
highly suitable for problems were the shape needs to be controlled in both domains such as in abberation
retrieval where the basis is used in an inverse problem with an unknown abberation in the Fourier domain
and optimization functional in the spatial domain.

The Zernike basis was extended to 3D in [49]. The Zernike basis is orthogonal on the unit-ball and has
explicit results for the Fourier transform and is therefore more suitable for the application in mind. Here
we will use the generalized Zernike functions [46], which have the added advantage of going to zero when
approaching the edge of the ball.

3.3.1 The 3D Generalized Zernike Basis

Let α > 0. Then the generalized Zernike functions are given by

Zm,αn,l (ω) = Rl,αn (ρ)Yml (ϑ, ϕ), (98)

for all ω = ρn(ϑ, ϕ), with 0 ≤ ρ ≤ 1, for integer n, l ≥ 0 such that n = l + 2p with integer p ≥ 0 and
m = −l,−l + 1, ..., l, and

Rl,αn (ρ) = ρl(1− ρ2)αP
(α,l+ 1

2
)

p=n−l
2

(2ρ2 − 1), (99)

where P
α,l+ 1

2
p (z) denotes the Jacobi polynomial with weight-function (1− z)α(1 + z)l+

1
2 of degree p. The

generalized Zernike functions are orthogonal on the unit ball∫∫∫
‖ω‖≤1

Zm1,α
n1,l1

(ω)
(
Zm2,α
n2,l2

(ω)
) dω

(1− ρ2)α
= Nα

n,l δn1,n2δm1,m2δl1,l2 , (100)

with δ the Kronecker delta and with normalization factor

Nα
n,l =

(p+ 1)α

(p+ l + 3
2 )α

1

2(n+ α+ 3
2 )
, (101)

in which (x)α = Γ (x+α)
Γ (x) is the (generalized) Pochhammer symbol.

Remark 13 They are called ‘generalized’ Zernike functions because of the extra factor (1−ρ2)α surpressing
the Zernike basis functions at the boundary ρ = 1, where later we will rescale this to the boundary ρ = %
in the Fourier domain of our restriction to ball-limited images L%2(R3). Note that for α = 0 the functions
Zm,0n,l correspond, up to normalization, to the standard 3D Zernike ball polynomials considered in [50,51]
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Fourier transform
The Fourier transform of the generalized Zernike function

(F−1Zm,αn,l )(x) =

∫∫∫
‖ω‖≤1

e2πi(ω·x)Rl,αn (ρ)Yml (ϑ, ϕ) dω (102)

is given by
(F−1Zm,αn,l )(x) = 4πilSαn,l(2πr)Y

m
l (θ, φ), (103)

with x = r n(θ, φ) and

Sαn,l(q) =
1∫
0

Rl,αn (ρ)jl(qρ)ρ2dρ

=

2α(−1)p(p+ 1)α
√

π
2q

J
n+α+ 3

2
(q)

qα+1 if q > 0,
√
π Γ (1+α)

4Γ ( 5
2
+α)

δn,0 if q = 0.

(104)

For integer α ∈ N, the expression for q > 0 reduces to 2α(−1)p (p+α)!
p!

jn+α+1(q)
qα+1 . For details on the compu-

tation see [46].

Expansion of separable functions
An additional constraint for the wavelets is that they should be separable in the Fourier domain, i.e.,
(Fψ)(ω) = F (ω) = A(n(ϑ, ϕ)) ·B(ρ). When expanding such a function in the generalized Zernike basis,

F (ω) =
∑
n,l,m

cm,αn,l (F ) Zm,αn,l (ω), (105)

we can split the coefficients in radial coefficients and angular coefficients

cm,αn,l (F ) = 1
Nα
n,l

∫∫∫
‖ω‖≤1

(Zm,αn,l (ω)) F (ω) dω
(1−ρ2)α = aml (A) · b̃l,αn (B),

b̃l,αn (B) := 1
Nα
n,l
bl,αn (B).

(106)

Due to orthogonality of the basis functions (98) one has

aml (A) =

π∫
0

2π∫
0

(Yml (ϑ, ϕ)) A(n(ϑ, ϕ)) sinϑdϑdϕ, (107)

bl,αn (B) =

∫ 1

0

B(ρ)Rl,αn (ρ)
ρ2dρ

(1− ρ2)α
. (108)

The coefficients cm,αn,l in (106) reflect the separation of F as a product of an angular and radial factor as
well as a corresponding separation of the generalized Zernike basis functions in (98). In the latter, the
index l appears both in the angular and radial factor. Thus we have

A(n(ϑ, ϕ)) =
∞∑
l=0

l∑
m=−l

aml Y
m
l (ϑ, ϕ), (109)

while for all l = 0, 1, . . .

B(ρ) =
∑

n=l,l+2,...

b̃l,αn Rl,αn (ρ). (110)

For each l, the radial functions Rl,αn with n varying are a basis for functions defined on the interval
[0, 1]. For separable functions, we expand the same radial function B(ρ) for each l, and it can be shown
that there is an efficient recursion formula for the radial coefficients [46].

3.3.2 Wavelets

We now choose an appropriate radial and angular functions for our wavelets expressed in the Zernike basis.
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Angular function for the Zernike wavelets
For the angular functions we again choose the (truncated) spherical diffusion kernel A(n(ϑ, ϕ)) =

GS
2

so (n(ϑ, ϕ)), recall (69).

Flat radial profile for all-scale transform
Recall the procedure of splitting of the lowest frequencies (49) in a vector-valued wavelet ψ = (ψ0, ψ1).

For all-scale wavelets we design a radial function for the relevant part of the wavelet ψ1 that is used in
processing, and we set

∫
Sd−1 ψ0,ndσ(n) = Gsρ(ρ).

The radial function of ψ1 should therefore approximate B(ρ) = 1 − Gsρ(ρ) on the interval [0, %] and
should smoothly go to zero when approaching the edges of the interval. For the moment we set % = 1 and
include the scaling later.

To start, we define the function
Bα,β(ρ) = (1− ρ2)αρβ , (111)

see Fig. 18a. For this function we have the following coefficients

bl,α,βn=l+2p =

( β−l
2
p

)
(2α+ β + l + 2p+ 3)

( 1
2
(β+l+1)+α+p

α+p

) . (112)

To obtain a flatter function we multiply the function with a second order Taylor expansion of the reciprocal
function ρ 7→ (Bα,β(ρ))−1 around the function maximum obtained at

ρmax =

(
1
2β

α+ 1
2β

) 1
2

, (113)

see Fig. 18b. Henceforth we denote the 2nd order Taylor expansion of the reciprocal basis function around
ρmax by Brec

α,β(ρ). The resulting function is again a sum of functions of type (111) with different values for

β, so we can find the coefficients bl,αn=l+2p for the flattened function. For the specific case β = 2 we get the
following flattened function

Bflat
α,2(ρ) = Bα,2(ρ) ·Brec

α,2(ρ) = (1− ρ2)αρ2 ·
(

1 +
(α+ 1)3

2α

)
(ρ2 − ρ2

max)2,

The flattened function and its coefficients are now given by

Bflat
α,2(ρ) =

∑
n−l=2p,
l, n ≥ 0

bl,flat
n Rl,αn (ρ) and bl,flat

n =
2∑
i=0

cib
l,α,β+2i
n , (114)

with ci the coefficients before the different powers of ρ2 in the second order Taylor series of the reciprocal.
These coefficients are given by

Brec
α,2(ρ) =

2∑
i=0

ciρ
2i = c0 + c1ρ

2 + c2ρ
4, with

c0c1
c2

=

1 + (α+1)3

2α ρ4
max

−2 (α+1)3

2α ρ2
max

(α+1)3

2α

 . (115)

The filters from this section are summarized in the following result:

Result 2. (Analytic 3D-wavelets in generalized Zernike basis)
Let α > 0 and let A : S2 → R+ be a function mostly supported in a sharp, convex cone around the z-
axis and symmetrically around the z-axis. Then A provides our wavelet ψ̂ in the Fourier domain by Eq.
(73). The real part of ψ detects tubes, whereas the imaginary part detects edges. We choose radial function

g(ρ) = Bflat( ρ
ρN

), angular function A(n(ϑ, ϕ)) = GS
2

so (n(ϑ, ϕ)) and expand in the generalized Zernike basis:

ψ̂α(ω) =
∑

n−l=2p,
l, n ≥ 0

c0n,lR
l,α
n

(
ρ

ρN

)
Y 0
l (ϑ, ϕ). (116)
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Fig. 18 Left Function Bα=6,β=2(ρ) = (1− ρ2)6ρ2 with maximum at ρ2 = 1
7

. Right Flattened function which is obtained
from Bα,β(ρ) by multiplying with the 2nd order Taylor approximation of its reciprocal around the function maximum:

Bflat
6,2 (ρ) = (1 + 73

12
(ρ2 − 1

7
)2)B6,2(ρ).

Then the coefficients c0n,l follow by expanding A in spherical harmonics and Bflat
α,2 in the radial Zernike

polynomials, recall Eq. (109) and Eq. (110). This yields a0
l (Eq. (76)) and bαn,l (Eq. (114)) and

c0n,l = b̃αn,l · a0
l ·
(

1− (−1)l + Pl(0)
)
. (117)

The spatial wavelet is given by

ψα(x) =
∑

n−l=2p,
l, n ≥ 0

c0n,l4πi
lSαn,l(2πrρN )Y 0

l (θ, φ), (118)

with x = rn(θ, φ) and Sαn,l given by Eq. (104). This yields the rotated filters in the spatial domain:

ψα,n(x) =
∑

n−l=2p,
l, n ≥ 0

l∑
m′=−l

(cn)m
′

n,l 4π il Sαn,l(2πrρN )Ym
′

l (θ, φ),

where (cn)m
′

n,l = c0n,lD
l
0,m′(γ, β, 0) and n = n(β, γ), (119)

and with Wigner-D-matrices Dlm=0,m′(γ, β, α = 0) are according to the conventions in Mathematica.

Since now we do have analytical expressions for the spatial filter, in contrary to the filters from Result 1,
we sample them by Eq.(119). The filter is a proper wavelet with fast reconstruction property (recall Def. 13).

3.4 Comparison of wavelets obtained via DFT and analytical expressions using the Zernike basis

First we compare the filters obtained by sampling in the Fourier domain followed by a DFT (Section 3.1)
to the filters obtained by expansion in the Zernike basis (Section 3.3). Settings were chosen such that the
radial functions of both wavelets matched best and the same settings for the angular function were used.
In Fig. 19 we show that the filters are very similar in shape. We see no major artifacts caused by sampling
followed by an inverse DFT.

3.5 Quality of the 3D image reconstruction

A visual inspection of the reconstruction after the transformation and reconstruction procedure can be
found in Fig. 20. As expected, a small amount of regularization is observed. We see no qualitative differences
between the two reconstructions.

The series in (119) converges rapidly and the analytic wavelets in Result 2 are really close to the
numerical and practical ones from Result 1. This justifies the numeric DFT-approach, and at the same
time the analytic description of the kernels could be used for analytic (and steerable) processing in the
orientation score. For example, for computing left-invariant derivatives.
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Fig. 19 Comparison of the filters obtained by sampling in the Fourier domain and performing an inverse-DFT (Result 1
in Section 3.1) and the filters expressed in the Zernike-basis (Result 2 in Section 3.3). Left Iso-contour plot of the filter
aligned with the x-axis showing one positive iso-contour (orange) and one negative iso-contour (blue). Middle Cross section
of the filter for z = 0. Right The low-pass filter. Top Filters according to Result 1 with parameters sρ = 1

2
(1.9)2, γ = 0.85,

and σρ = 1.125. Bottom The filters according to Result 2 with α = 3 and β = 2. Both have so = 1
2

(0.4)2, L = 19 and are
evaluated on a grid of 31× 31× 31 voxels.

Fig. 20 Comparison of construction and reconstruction of data A.1 using the different types of filters. In each row from
left to right an iso-contour of the data and 3 slices through the middle of the data along the three principal axis. Top: The
original data. Middle: the data after construction and reconstruction using the filters from Result 1. Bottom: the data
after construction and reconstruction using the filters from Result 2.

Exercise 17 (relating derivatives on kernels to left-invariant derivatives on scores on Lie groups) Let G
be a Lie group. Let ψ : Rd → R+ be smooth. Let U : G → B(L2(Rd)) be a group representation with
which we construct the score given by

Wψf(g) = (Ugψ, f)L2(Rd).
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Let R : G → B(L2(G)) denote the right-regular representation given by (11). Let L : G → B(L2(G))
denote the left-regular representation given by (12). Let us recall from the preliminaries how generators of
Lie group representations were defined; see Eq. (17).

a.) Show that
WUgψf = RgWψf.

for all f ∈ L2(Rd) and all g ∈ G.
b.) Show that

WdU(A)ψf = dR(A)(Wψf) ,

for all A ∈ Te(G) and all f ∈ L2(Rd).
c.) Show that

Lg ◦ Rh = Rh ◦ Lg for all g, h ∈ G.

d.) Show that
Lg ◦ dR(A) = dR(A) ◦ Lg for all g ∈ G and all A ∈ Te(G).

e.) Set d = 3 and G = SE(3). How can the above four items (in combination with analytic representations
in Result 2) be used to compute left-invariant derivatives of an orientation score?

4 Processing via Invertible Scores

4.1 Image Processing via Scores on Lie groups G = Rd oτ T

Let G = Rd oτ T be a Lie group which is the semi-direct product of the translation group with an-
other Lie group T via an isomorphism τ : T → aut(Rd). Let U : G → B(L2(Rd)) be a unitary Lie
group representation chosen to tackle the application of interest. For example the representation given by
Ug=(b,t)ψ(x) = 1

det(τ(t)) ψ
(
(τ(t))−1)(x− b)

)
, or in particular the representation U : SE(d)→ B(L2(Rd))

given by (4) which essentially rotates and translates images and wavelets. This could also be the Schrödinger
representation of the Heisenberg group H(2d+ 1) onto B(L2(Rd)).

Set ψ ∈ L1(Rd) ∩ L2(Rd). Then (in all cases) we consider the corresponding ‘score’ given by

(WG
ψ f)(g) = (Ugψ, f)L2(Rd) for all g ∈ G, f ∈ H,

where WG
ψ : H → CGK with

H = {Ugψ | g ∈ G},

is unitary according to Lemma 4.
Now in our primary case of interest (4) with G = SE(d) = Rd o SO(d), ψ an (axially symmetric)

proper wavelet according to Definition 13), and HNEW = H ∩L%2(Rd), the ‘rotation score of a ball-limited
image’ boils down to an ‘orientation score’ of a ball-limited image, as we define

Wψf(x,n) = (WG=SE(d)
ψ f)(x, Rn),

for all f ∈ L%2(Rd), and (x,n) ∈ Rd o Sd−1, which is independent on the choice of Rn ∈ SO(d) mapping
reference axis a onto n.

In other cases of interest, such as the Schrodinger representation of the Heisenberg group [20] the score
is a Gabor transform (equipped with a relevant phase), which is very similar to a ‘musical score’ and
provides an overview of all local frequencies (instead of local orientations) present in a signal.

There exists exists a 1-to-1 correspondence between bounded operators Φ ∈ B(CGK) on scores and
bounded operators Υ ∈ B(L2(Rd)) on images given by

Υ [f ] = ((WG)∗ψ ◦ Φ ◦WG
ψ )[f ], f ∈ H ⊂ L2(Rd). (120)

If the closed vector subspace of images H and ψ is chosen such that the space CGK is embedded as a normed
subspace of L2(G), this allows us to relate operators on transformed images to operators on images in a
robust manner. To get a schematic view of the operations see Figure 21.
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Processed 
Image

Processed
Orientation Score

Φ

Wψ

W∗
ψ

Υψ

f Uf

Image Orientation Score

Fig. 21 A schematic view on image processing via invertible orientation scores. According to Theorem 4, Φ must be
left-invariant and not right-invariant.

Let us consider the case G = SE(d) where T = SO(d). By Theorem 2 the range of the unitary wavelet
transform Wψ : L2(R2) → CGK is a subspace of L2(G). For proper wavelets we have (approximative) L2-
norm preservation when restricting do ball-limited images. For certain distributional proper wavelets ψ,
see the exercise in Appendix A), one even has Mψ = 1 and this case the reproducing kernel norm truly
equals the L2-norm itself.

Now this idea, can unfortunately be transferred to a limited amount of other unimodular Lie groups
G = Rd o T where T is a matrix group, since for a finite definition of function Mψ, cf. [40] of

Mψ(ω) = (2π)
d
2

∫
T

|ψ̂(τ(t)Tω)|2dµT (t),

with (left) Haar-measure µT , we need compact stabilizers StabT (ω) := {t ∈ T | (τ(t))Tω = ω}, which
already rules out SO(md, nd) with nd,md ∈ N such that nd + md = d and min{md, nd} ≥ 2. Even the
Lorentz group case for d ≥ 3 is problematic as T = SO(d− 1, 1) gives a rather strong condition on ω for
StabT (ω) to be compact, namely the cone-condition (ωd)2 >

∑d−1
i=1 (ωi)2.

In general, we consider some matrix group T and a mother wavelet ψ such that Mψ is essentially
bounded on Rd (in particular we think of T = SO(d)) and in that case WG

ψ maps L2(Rd) into L2(G). Let

Φ : CGK → L2(G) be a bounded operator. Then its range need not be contained in CGK , i.e. the transformed
score Φ(WG

ψ f) is a function on a Lie group and may not be equal to the score of some image....

Therefore we also consider W̃ψ : L2(Rd)→ L2(G) given by W̃ψf =WG
ψ f . Its adjoint is given by,

(W̃ψ)∗(V ) =

∫
G

Ugψ V (g) dµG(g), V ∈ L2(G). (121)

The operator Pψ = W̃ψ(W̃ψ)∗ is the orthogonal projection on the space CGK , whereas WG
ψ (WG

ψ )∗ = I.
This projection can be used to decompose operator Φ:

Φ(Uf ) = Pψ(Φ(Uf )) + (I − Pψ)(Φ(Uf )).

Notice that the orthogonal complement (CGK)⊥, which equals range R(I − Pψ), is exactly the null-space

of (W̃ψ)∗ as N ((W̃ψ)∗) = N ((Wψ)∗) = (R(Wψ))⊥ = (CKG )⊥ and so

[(W̃ψ)∗ ◦ Φ ◦ W̃ψ][f ] = [(W̃ψ)∗ ◦ Pψ ◦ Φ ◦ W̃ψ][f ], (122)

for all f ∈ L2(R2) and all Φ ∈ B(L2(G)), so we see that the net operator associated to Φ : L2(G)→ L2(G)
is given by Pψ ◦ Φ : L2(G)→ CGK . In the remainder of this section we present design principles for Υ .

4.2 Design Principles

We now formulate a few desirable properties of Υ , and sufficient conditions for Φ that guarantee that Υ
meets these requirements.
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1. Covariance with respect to the group representation in the image domain:

Υ ◦ Ug = Ug ◦ Υ, ∀g ∈ G. (123)

This is achieved by restricting one self to left-invariant operators Φ. Often we will omit scaling covariance
in Eq.(123) as in many imaging applications this is not natural and therefore we require (123) only to
hold for the SE(2) subgroup.

2. Left-invariant vector fields: In order to achieve the Euclidean invariance mentioned above, we need
to employ left-invariant vector fields on SIM(2) as a moving frame of reference.

3. Nonlinearity: The requirement that Υ commute with U immediately rules out linear operators Φ. Her
we note that U can be decomposed into irreducible representations (recall for example Section 2). Now
by Schur’s lemma [15], any linear intertwining operator with an irreducible representations is a scalar
multiple of the identity. For continuous wavelet transforms on G = SIM(2), or Gabor transforms on
G = H(2d+ 1) the representation used is already irreducible, which shows that linear operators acting
on those types of scores are useless. For invertible orientation scores, one has that linear operators Φ just
correspond to isotropic convolutions Υ in the spatial domain, which again would not need an orientation
score decomposition. Combining linear diffusions with monotone operations on the co-domain can be
simple and effective though [18].

4. Crossing-preserving, left-invariant parabolic evolutions on G: We consider the following two
types of evolutions which include the wavelet transform as a initial condition.

5. Crossing-preserving wavefront propagation in G: Avoid the hastle of book-keeping of multi-
valued solutions: extend the domain instead of the range of images f : Rd → R.

6. Probabilistic models for contextual, left-invariant feature propagation in the wavelet do-
main: Instead of uncorrelated soft-thresholding of wavelet coefficients we aim for PDE flows that
amplify the wavelet coefficients which are probabilistically coherent w.r.t. neighbouring coefficients.
This coherence w.r.t. neighbouring coefficients is based on underlying stochastic processes (random
walks) for multiple-scale contour enhancement.

7. Geometric curve fitting in the score using left-invariant Finslerian, Riemannian and sub-
Riemannian (SR) geometries within G:
Deal with both crossings and bifurcations: Turn off the reverse gear along SR geodesics in scores to
avoid cusps in their spatial projections.

4.3 Score Processing via Left-invariant (and not Right-invariant) Operators

Let G = Rd oτ T denote an arbitrary unimodular Lie-group.

Definition 17 An operator Φ : L2(G)→ L2(G) is left-invariant iff

Φ[LhV ] = Lh[ΦV ], for all h ∈ G, V ∈ L2(G), (124)

where the left-regular action Lg of g ∈ G onto L2(G) is given by LhV (g) = V (h−1g).

Recall that the right-regular action is given by RhV (g) = V (gh).

Theorem 4 Let U : G → B(L2(Rd)) be a unitary representation. Let Φ : CGK → L2(G) be a bounded

operator. Then the unique corresponding operator Υ on H given by Υ [f ] = (W̃ψ)∗ ◦ Φ ◦ W̃ψ[f ] on the
images satisfies

Ug ◦ Υ = Υ ◦ Ug for all g ∈ G

if and only if the effective operator on the score Pψ ◦ Φ is left-invariant, i.e.

Lg(Pψ ◦ Φ) = (Pψ ◦ Φ)Lg, for all g ∈ G,

which shows that score processing must be left-invariant. Moreover, we have

Φ ◦ Rg = Rg ◦ Φ⇒ Υψ = ΥUgψ for all g ∈ G,

which shows that right-invariance is a highly undesirable property for score processing.
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Exercise 18 Consider G = SE(d), and for the red exerises below you may restrict yourself to d = 2 where
SE(2) ≡ R2 o S1.

a.) Show that for all f ∈ L2(R2) and almost every ω ∈ R2 and all θ ∈ [0, 2π) we have

(FW̃ψf(·, θ))(ω) = 2π Fψθ(ω)Ff(ω)

with ψθ(x) := ψ(R−1
θ x) for x ∈ R2, θ ∈ [0, 2π).

b.) Show that for all f ∈ L%2(R2) one has

‖W̃ψf‖2L2(R2oS1) = (2π)2

∫
R2

Mψ(ω) |(Ff)(ω)|2 dω <∞

c.) Derive the adjoint operator of W̃ψ : L%2(Rd)→ L2(G), and the adjoint operator of Wψ : L%2(Rd)→ CGK ,
and explain the difference of their operator description in terms of Mψ : R→ R+.
hint: Recall (36) and (121)

d.) Use the unitarity of the representation U to show that

W̃ψ ◦ Ug = Lg ◦ W̃ψ and W̃Ugψ = Rg ◦ W̃ψ for all g ∈ G

e.) Show that

W̃∗ψ ◦ Lg = Ug ◦ W̃∗ψ for all g ∈ G.

f.) Prove Theorem 4.

g.) Show that P = W̃ψ ◦ (W̃ψ)∗ : L2(SE(d) → L2(SE(d)) is the orthogonal projection onto the range of

W̃ψ, and express (PU)(g) in terms of the reproducing kernel of the space of orientation scores.

h.) Generalize the above results to d ∈ {2, 3}.

Corollary 4 Every PDE-image processing technique involving shift-invariant partial derivatives
{∂x1 , . . . , ∂xd} in Rd admits a PDE-processing extensions involving left-invariant derivatives
{A1, . . . ,Ad,Ad+1, . . .An} in G = Rd o T where left-invariant derivatives coincide with left-invariant
vector fields given by

Ai|g = (Lg)∗Ai = dR(Ai)|g , i = 1, . . . , n = dim(G), for all g ∈ G,

where ∗ denotes the push-forward, and where dR(Ai) denote the generator (17) of the left-invariant (!),
right regular representation R, relative to some choice of Lie algebra basis {A1, . . . Ad, Ad+1, . . . , An}.
The key advantage is that this extended PDE-processing technique allows one to deal with complex-
structures requiring multiple frames per position.

Remark 14 (practical illustrations for G = SE(2))
See Figure 22 and Figure fig:comp on how Theorem 4 for our case of interest G = SE(2) (where our
score is an orientation score) enters practical image processing. Figure 22 illustrates the crucial identity
WψUg = LgWψ. However, the crucial idea that left-invariant score processing is a must from the application
point of view, is best seen in Figure 23 where we compare application of left-invariant derivatives

A1 = cos θ ∂x + sin θ ∂y, A2 = − sin θ ∂x + cos θ ∂y,A3 = ∂θ, (125)

to application of Cartesian derivatives ∂x, ∂y, ∂θ to real parts of orientation scores Wψf : SE(2)→ C.
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Fig. 22 A roto-translation of the image corresponds to a shift-twist of the orientation score, both defined via a group
representations of SE(2) on the image and the orientation score. Shift-twist of images and orientation scores are denoted
respectively by the left-regular representations Ug and Lg . In this illustration ofWψ ◦Ug = Lg ◦Wψ we have set g = (0, θ),
with θ increasing θ from left to right.

4.4 Concise Overview of Image Processing Techniques via Invertible Orientation Scores

The orientation scores provide a full comprehensive overview of all local orientations present in the image,
and this can be exploited for many processing techniques (typically where the assignment of only one
orientation per spatial location is un-sufficient; i.e. where complex structures are involved, or where some
notion of contextual-alignment for a more robust processing).

In the remainder of this course we shall restrict ourselves on the following type of crossing-preserving
image processing operators in the orientation score domain:

– Nonlinear (adaptive) diffusions on invertible orientation scores for enhancement of elongated structures
or denoising. Recall the bottom figures in Figure 4. See the top figure in Figure 24.

3D: To stress the strength of the crossing-preserving diffusions via 3D invertible orientation scores, we
compare with (Gaussian) regularization acting directly in the image domain, see Figure 26. For a
fair comparison diffusion times are in both cases separately optimized for contrast to noise ratios.
For details see [48]. It is remarkable to see how stable vessel-widths stay under the data-adaptive
diffusions for a wide range of diffusion times, see Figure 27.

2D: To see the basic idea of the advantage of 2D-crossing-preserving diffusion see Figure 25. For a more
challenging case see the denoising example of a 2-photon microscopy containing collagen fibers at
http://bmia.bmt.tue.nl/people/RDuits/CEDOS-example.avi.

– Linear Diffusions combined with soft-thresholding of wavelet coefficients (via non-linear transformations
in co-domain) for line-amplification/enhancement. See [24,18].

– Wavefront propagation for connectivity quantification. See [28,11]. The basic idea is illustrated in
Figure 3. This is particularly interesting in Diffusion Weighted-MRI applications (where crossings fiber
structures are prominently present), see e.g.[60,63,58].

– Feature-analysis and biomarkers via locally adaptive frames [6, chapter 11].
– Tracking of elongated structures (vessels, fibers) in medical images. The key advantage to do tracking

via orientation scores is illustrated in Figure 4 (2nd row) as crossings ar manifestly disentangled in
the score allowing for decent tracking without weird corners and short-cuts at complex regions such as
crossings. For a first impression see also Figure 29 See Figure 28 where we track vessels in retinal images,
and show advantages of our approach. For many more test-cases we refer to [6,7,64] and extensions
that deal generically with bifurcations, cusps and spherical data see [28,47,?].
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Fig. 23 In orientation scores a left-invariant derivative frame {A1,A2,A3} should be used instead of the axes-aligned
frame {∂x, ∂y , ∂θ} (illustrated in the top figure). The bottom three rows of figures compare different orientation layers of
the orientation score with the Cartesian derivative ∂y and left-invariant derivative A2. Here we see that A2 is invariant
under the orientation, i.e., its interpretation does not change.
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Fig. 24 Applications of processing via 3D orientation scores. Top: We reduce noise in real medical image data (3D
rotational Xray) of the abdomen containing renal arteries by applying diffusions via 3D orientation scores. Bottom:
Geometrical features can be directly extracted from our tubularity measure via 3D orientation scores. We apply this
method to cone beam CT data of the brain. The picture of the brain (bottom left) was used with permission from Blausen
Medical inc., copyright 2016.
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original image CED: standard approach CED-OS: our approach

Original +Noise CED-OS t = 10 CED t = 10

Fig. 5. Shows the typical different behavior of CED-OS compared to CED. In CED-OS
crossing structures are better preserved.

Original CED-OS t = 2 CED-OS t = 30 CED t = 30

Fig. 6. Shows results on an image constructed from two rotated 2-photon images of
collagen tissue in the heart. At t = 2 we obtain a nice enhancement of the image.
Comparing with t = 30 a nonlinear scale-space behavior can be seen. For comparison,
the right column shows the behavior of CED.

9 Conclusions

In this paper we introduced nonlinear diffusion on the Euclidean motion group.
Starting from a 2D image, we constructed a three-dimensional orientation score
using rotated versions of a directional quadrature filter. We considered the ori-
entation score as a function on the Euclidean motion group and defined the
left-invariant diffusion equation. We showed how one can use normal Gaussian
derivatives to calculate regularized derivatives in the orientation score. The non-
linear diffusion is steered by estimates for oriented feature strength and curvature
that are obtained from Gaussian derivatives. Furthermore, we proposed to use
finite differences that approximate the left-invariance of the derivative operators.

The experiments show that we are indeed able to enhance elongated patterns
in images and that including curvature helps to enhance lines with large cur-
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Figure 15: Shows the typical different behavior of CED-OS compared to CED. In CED-OS crossing
structures are better preserved.

Original +Noise CED-OS t = 30 CED t = 30

Figure 16: Result of CED-OS and CED on microscopy images of bone tissue. Additional Gaussian
noise is added to verify the behaviour on noisy images.

Figure 15 shows the effect of CED-OS compared to CED on artificial images with crossing line
structures. The upper image shows an additive superimposition of two images with concentric
circles. Our method is able to preserve this structure, while CED can not. The same holds for
the lower image with crossing straight lines, where it should be noted that our method leads to
amplification of the crossings, which is because the lines in the original image are not superimposed
linearly. In this experiment, no deviation from horizontality was taken into account, and the
numerical scheme of Section 7.2 is used. The non-linear diffusion parameters for CED-OS are:
nθ = 32, ts = 12, ρs = 0, β = 0.058, and c = 0.08. The parameters that we used for CED are (see
[40]): σ = 1, ρ = 1, C = 1, and α = 0.001. The images have a size of 56× 56 pixels.

Figure 1 at the beginning of the paper shows the results on an image of collagen fibres obtained
using 2-photon microscopy. These kind of images are acquired in tissue engineering research, where
the goal is to create artificial heart valves. All parameters during these experiments were set the
same as the artificial images mentioned above except for CED parameter ρ = 6. The image size
is 160× 160 pixels.

Figures 16 and 17 show examples of the method on other microscopy data. The same param-
eters are used as above except for ts = 25 in Figure 17. Clearly, the curve enhancement and noise
suppression of the crossing curves is good in our method, while standard coherence enhancing
diffusion tends to destruct crossings and create artificial oriented structures.

Figure 18 demonstrates the advantage of including curvature. Again, the same parameters and
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Fig. 25 Left-invariant processing via invertible orientation scores is the right approach to generically deal with crossings
and bifurcations. Left column: original images. Middle column: result of standard coherence enhancing diffusion applied
directly on the image (CED), cf. [76]. Right column: coherence enhancing diffusion via invertible orientation score cf. [37,
25]. Top row: 2-photon microscopy image of bone tissue. Middle row: collagen fibers of the heart. Bottom row: artificial
noisy interference pattern. CED-OS is capable of handling crossings and bifurcations, whereas CED produces spurious
artifacts at such junctions.
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Fig. 26 Volume rendering of the diffusion output results for 3 noisy datasets visualized in the Philips viewer [67] using
default settings in both cases. For both cases we used optimized diffusion times w.r.t. contrast to noise ratios as explained
in [48].
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Fig. 27 Measurement of vessel radius in vessel cross-sections after different amounts of diffusion in a noisy dataset.
Left: 3D Visualization of the data with the select slices. Middle: Radii measurements for increasing diffusion time for
CEDOS. Right: Radii measurements for increasing diffusion time for Gaussian regularization. The detected vessel width
is not influenced by our regularization method which is the case for Gaussian regularization. Bottom: Cross-sections of
one vessel for increasing diffusion time with detected vessel edge position (green points) and search area for edge detection
(red circle).
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Fig. 28 Some typical examples showing the benefit of vessel tracking in invertible orientation scores. When applying vessel-
tracking along globally optimal sub-Riemannian geodesics (with infinite spatial anisotropy in the left-invariant frame of
reference, recall Figure 23), in the orientation score domain results are better than the results obtained by globally optimal
(isotropic) sub-Riemannian geodesics. Details will follow in part IV of this course.
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Fig. 29 Illustration of vessel tracking in the domain of an orientation score, cf. [6].

Exercise-Mathematica 1. Some steps regarding hands-on experience of invertible orientation score pro-
cessing via our Lie Analysis package:

a.) Consider the Lie-Analysis package for latest version of Mathematica (version 11.0 or later), Wolfram
Resarch. It can be donwloaded from the web-address:

http://www.lieanalysis.nl/downloads

b.) If you are unfamiliar with Mathematica as a programming language, we recommend to first study the
general Mathematica tutorial at

http://www.wolfram.com/language/elementary-introduction/2nd-ed/

c.) You can install the Lie-Analysis package in the right folder on your computer, that is in the Mathe-
matica addons folder
(NB. this address is found by typing an input cell with $UserBaseDirectory or $AddOnsDirectory).

d.) Consider the Help-index (this is automatically included when installing the Lie Analysis package).
Study the following items in the help-index:
– CakeWaveletStack
– OrientationScoreTransform
– InverseOrientationScoreTransform.
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e.) Study the tutorial "http: // www. lieanalysis. nl/ documentation/ ?ref= www. lieanalysis. nl/

reference/ tutorial/ ProcessingOn2DImages. html"

You can run this tutorial yourself as follows:
– press F1 (this opens help index Mathematica),
– search for LieAnalysis,
– go to section tutorials,
– open processing on 2D images. Run the cells by pressing SHIFT-ENTER.

f.) Study the tutorial "http: // www. lieanalysis. nl/ documentation/ ?ref= www. lieanalysis. nl/

reference/ tutorial/ ProcessingOn3DImages. html"
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A The closure of the distributional orientation score transform is an L2-isometry on the
whole L2(R2) space.

From the condition ψ ∈ L1(R2)
⋂

L2(R2) it follows that the function Mψ : R2 → R+ is a continuous function vanishing at
infinity. In fact this follows by [66, Thm. 7.5], Fubini’s theorem and compactness of SO(2). As a result, we can not take
the limit %→∞ in the definition of proper wavelets, recall Definition .

Therefore we restricted ourselves, a priori, to bandlimited/disklimited images f , bounded by a fixed radius % > 0 close
to the Nyquist frequency induced by the sampling rate. However, as we will show in this section such a restriction to band
limited images is not crucial (and in principle the invertibility of the orientation scores does not necessarily rely on finite
pixel sizes).

Akin to the unitary Fourier transform F : L2(R2)→ L2(R2), whose kernel k(ω,x) = e−iω·x is not square integrable,
we can allow non-square integrable kernels and rely on Gelfand-Triples [78] as we will explain next.

To this end we first drop the constraint ψ ∈ L1(Rd)
⋂

L2(Rd) by imposing ψ to be in a dual Sobolev-space:

ψ ∈ H−I(R2) = H∗I (R2) = (D(Dβ))∗, (126)

where
HI(R2) = D(Dβ) =

{
f ∈ L2(R2)

∣∣f admits generalized derivatives s.t. Dβf ∈ L2(R2)
}

(127)

equipped with inner product
(·, ·)HI (R2) = (Dβ ·, Dβ ·)L2(R2)

and where β : R2 7→ R+ is continuous, bounded from below, isotropic, and with differential operator

Dβ = F−1βF .

Now Dβ is an unbounded self adjoint, positive operator with bounded inverse. This means that Dβ defines a so-called
Gelfand-Triple

HI(R2) ↪→ L2(R2) ↪→ H∗I (R2) = H−I(R2),

where H−I(R2) is equipped with inner product

(·, ·)H−I (R2) = (D−1
β ·, D

−1
β ·)L2(R2),

and where all embeddings are dense. Subsequently, we define the distributional orientation score transform16

(Wψf)(g) =
〈
ψ,Ug−1f

〉
,

for all f ∈ HI(R2) and all g ∈ SE(2), where we applied the notation 〈b, a〉 = b(a) for functional b acting on vector a. Note
that our non-distributional orientation score transform can be rewritten as

(Wψf)(g) = (Ugψ, f) = (ψ,U∗g f) = (ψ,Ug−1f).

Under a certain condition on ψ, we show that operator W is an isometry from HI(R2) (with L2-norm) into L2(SE(2)).
Therefore this operator is closable and its closure is an isometry. This bring us to the main result.

Theorem 5 Let ψ ∈ H−I(R2). If M
D−1
β
ψ

= β−2 then Wψ maps D(Dβ) isometrically (w.r.t. L2-norm) onto a closed

subspace of L2(SE(2)). Moreover, this operator is closable and its isometric closure is given by DβWD−1
β
ψ

: L2(R2) →

L2(SE(2)), where W
D−1
β
ψ

is the normed non-distributional orientation score transform, w.r.t. kernel D−1
β ψ ∈ L2(R2).

Proof. First we provide some preliminaries. Operator Dβ is an unbounded, self-adjoint (thereby closed) operator that is

bounded from below, with bounded inverse. Therefore, HI(R2) is again a Hilbert space:

Let (fn)n∈N be Cauchy in HI(R2). Then (Dβfn)n∈N is Cauchy in L2(R2). Because L2(R2) is complete we have

Dβfn → g in L2(R2). But then, since D−1
β is bounded, fn is also Cauchy in L2(R2), so fn → f in L2(R2) to some

f ∈ L2(R2). Now Dβ is self adjoint and therefore closed so f ∈ D(Dβ) and Dβf = g. So we have Dβfn → Dβf in

L2(R2), so fn → f in HI(R2), and f ∈ HI(R2).

The space H−I(R2) is defined as the completion of HI(R2) and is equipped with inverse product (f, g)−I
= (D−1

β f,D−1
β g)L2(R2). This space is isomorphic to the dual space of HI(R2) under the pairing

〈F, f〉 = (R−1F,Rf)L2(R2) (128)

for all F ∈ H−I(R2) and f ∈ HI(R2). In fact, all embeddings in HI(R2) ↪→ L2(R2) ↪→ H−I(R2) are dense. Now every

L2(R2) element is the limit of HI(R2) elements, i.e., HI(R2) is dense in L2(R2). Furthermore, since D−1
β is bounded we

have HI(R2) = D−1
β (L2(R2)).

16 The unitary representation Ug naturally extends to HI(R2) as the multiplier β in the Fourier domain is isotropic.
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Now after these preliminaries, let us continue with the proof. Consider the associated normal orientation score transform

Wψ̃ : L2(R2) 7→ CSE(2)
K

with ψ̃ = D−1
β ψ ∈ L2(R2) associated to ψ ∈ H−I(R2). Then by Lemma 4 and Theorem 2, this transform is unitary.

This transform maps L2(R2) onto the unique reproducing kernel subspace CSE(2)
K , with reproducing kernel K(g, h) =

(Ugψ̃,Uhψ̃). In fact we have

‖Wψ̃f‖
2

CSE(2)
k

=
∫
R2

∫
S1

|FWψ̃f(ω, θ)|2dθ M−1

ψ̃
(ω)dω =

∫
R2

|f(x)|2 dx,

for all f ∈ L2(R2). Therefore DβWψ̃ = DβWD−1
β
ψ

is an isometry from L2(R2) into L2(SE(2)) if M
D−1
β
ψ

= β−2 (since

β2M
D−1
β
ψ

= 1), and moreover if f ∈ D(Dβ) = HI(R2) we have (using Eq. (128) and DβUg = UgDβ) that

(DβWD−1
β
ψ
f)(g) = (W

D−1
β
ψ
Dβf)(g) = (UgD−1

β ψ,Dβf)L2(R2) = (D−1
β ψ,DβUg−1f)L2(R2)

=
〈
ψ,Ug−1f

〉
= (Wψf)(g),

for all g ∈ SE(2) and for all f ∈ HI(R2).

Now Hilbert space HI(R2) is dense in L2(R2) and DβWD−1
β
ψ

∣∣∣∣
HI (R2)

= Wψ maps HI(R2) (with L2-norm) isometrically

into L2(SE(2)). So Wψ is closable as it admits the closed extension DβWD−1
β
ψ

as an extension.

Remark 15 (Conclusion) By the result of the previous theorem, ψ ∈ H−I(R2) with M
D−1
β
ψ

= β−2 can be called proper

distributional wavelets. When insisting on an L2-isometric mapping between image and score one has to fall back on these
kind of wavelets. In case of cake wavelets (proper wavelets of class I [18, Ch. 4.6.1]), when %→∞ such wavelets typically
become oriented δ-distributions.

In case of proper wavelets of class II [18, Ch. 4.6.2] (including the kernel proposed by Kalitzin [52]) such wavelets
concentrate around and explode along the x-axis when N → ∞, [18, Fig. 4.11 and Ch. 7.3]. In both cases the limits do
not exists in L2-sense, but they do exist both pointwise and in H−I -sense. See also the exercise below.

We conclude from the results in this section that the orientation score framework does not insist on images to be
bandlimited, and remains valid regardless the sampling size/rate.

Exercise 19 (the distributional orientation score transform via Kalitzin’s 2D-wavelet)

a.) Show that the following series converges pointwise in C

ψ(x1, x2) =
1

σ

∞∑
n=0

(
z
σ

)n
√
n!

e
− |z|

2

σ2 , with z = x1 + i x2 ∈ C. (129)

b.) Show that Fψ(ω) = ψ(Rπ
2
ω) for all ω = (ω1, ω2) ∈ R2.

c.) Show that the series (129) converges uniformly on compact sets, both in the spatial and Fourier domain.
d.) Show that the series does not converge in L2-sense.
e.) Show that both Mψ = 1 and deduce that ψ is a proper distributional wavelet, but not a proper wavelet.
f.) Show that ψ does not have the fast reconstruction property (recall Definition 13).
g.) Show that

ψ(r, 0) = (8π)
1
4
√
r +O(r−

3
2 ).

(hint: For details see [18, ch:7.3]).
h.) Show that ψ ∈ (H4(R2))∗ = H−4(R2).
i.) Choose β(ω) = (1 + ‖ω‖2) and show that Wψ maps H4(R2) onto a closed subspace of L2(SE(2)).
j.) Determine the closure of Wψ .

B Separate Storage of the Low-frequency Components: Stability of the Vector-valued
Transform

In practice we are not interested in the zero and lowest frequency components since they represent average value and
global variations which appear at scales much larger than the structures of interest. We are however interested in storing
this data for reconstruction. Therefore we perform an additional splitting of our proper wavelets into two parts

ψ = ψ0 + ψ1, with ψ̂0 = Ĝsρ ψ̂, ψ̂1 = (1− Ĝsρ )ψ̂, (130)
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Fig. 30 Radial function g of ψ̂, see Eq. (66) and radial functions of ψ̂0 and ψ̂1 after splitting. The parameter γ controls
the inflection point of the error function, here γ = 0.85 relative to the Nyquest frequency %N . The steepness of the decay
when approaching ρN is controlled by the parameter σerf . At what frequency the splitting of ψ̂ in ψ̂0 and ψ̂1 is done is

controlled by parameter σρ =
√

2sρ > 0 which is here set relatively large for illustration purposes.

with Gaussian window in the Fourier domain given by

Ĝsρ (ω) = e−sρ‖ω‖
2
, (131)

which is one at ‖ω‖ = 0 and decreases when moving to higher frequencies. After splitting, ψ0 contains the average and low
frequency components and ψ1 the higher frequencies relevant for further processing. In this case we construct two scores.
One for the high-frequency components

(Wψ1
[f ])(x,n) = (ψ1,n ? f)(x), (132)

and one for the low-frequency components

(Wψ0
[f ])(x,n) = (ψ0,n ? f)(x). (133)

The vector transformation is then defined as

Wψ [f ] = (Wψ0
[f ],Wψ1

[f ]). (134)

For this transformation we have exact reconstruction formula

f(x) = (W−1
ψ Wψf)(x)

= F−1

[
M−1
ψ F

[
x̃ 7→

∫
Sd−1

(ψ̌1,n ?Wψ1
[f ](·,n))(x̃) + (ψ̌0,n ?Wψ0

[f ](·,n))(x̃) dσ(n)

]]
(x)

(135)

with

Mψ(ω) =

∫
Sd−1

∣∣∣ψ̂0,n(ω)
∣∣∣2 +

∣∣∣ψ̂1,n(ω)
∣∣∣2 dσ(n) (136)

Again, Mψ quantifies the stability of the transformation. The additional splitting in low and high frequencies effectively

causes a splitting in the radial function, see Fig. 30 where we used the relatively simple error function (66) as a point of
departure.

The next lemma shows us that the stability of the vector-valued orientation score transform is maintained after
performing the additional splitting.

Lemma 7 Let ψ ∈ L2(Rd) ∩ L1(Rd) such that

∃M>0,δ>0∀ω∈B% : 0 < δ ≤Mψ(ω) ≤M <∞. (137)

holds and with ψ̂(ω) ∈ R+. Then the condition number of Wψ : L%2(Rd)→ L%2(Rd o Sd−1) is given by

|cond(Wψ)|2 = ‖Wψ‖2‖W−1
ψ ‖

2 =
M

δ
. (138)

The condition number of Wψ : L%2(Rd)→ L%2(Rd o Sd−1) obtained from Wψ by performing an additional splitting in low

and high frequency components is given by

|cond(Wψ)|2 = ‖Wψ‖
2‖W−1

ψ ‖
2 =

2M

δ
, (139)

therefore guaranteing stability is maintained after performing the splitting.
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Proof. First, we find the condition number of Wψ which is given by

|cond(Wψ)|2 = sup
f∈L%2(Rd)

‖f‖L2
‖Wψf‖L2

· sup
f∈L%2(Rd)

‖Wψf‖L2
‖f‖L2

. (140)

For the first factor in Eq. (140) we find

 sup
f∈L%2(Rd)

‖f‖L2
‖Wψf‖L2

2

= sup
f∈L%2(R3)

‖Ff‖2L2
‖FWψf‖2L2

= sup
f∈L%2(R3)

∫
Rd |(f̂(ω)|2 dω∫

Sd−1

∫
Rd
|ψ̂n(ω)|2|f̂(ω)|2 dω dσ(n)

= sup
ω∈B%

1
Mψ(ω)

, (141)

which can be done similarly for the second factor now resulting in supω∈B%Mψ(ω). Then we obtain

|cond(Wψ)|2 = sup
ω∈B%

1

Mψ(ω)
· sup
ω∈B%

Mψ(ω) =
M

δ
. (142)

Similarly the condition number of Wψ is given by

|cond(Wψ)|2 = sup
ω∈B%

1

Mψ(ω)
· sup
ω∈B%

Mψ(ω). (143)

Then we express Mψ in Mψ (keeping in mind ψ̂ ≥ 0) of the original wavelet

Mψ(ω) =

∫
Sd−1

∣∣∣ψ̂0,n(ω)
∣∣∣2 +

∣∣∣ψ̂1,n(ω)
∣∣∣2 dσ(n)

=

∫
Sd−1

∣∣∣ψ̂0,n(ω) + ψ̂1,n(ω)
∣∣∣2 dσ(n)−

∫
S2

2ψ̂0,n(ω)ψ̂1,n(ω)dσ(n) = Mψ(ω)− I(ω).

(144)

So it remains to quantify I(ω). For a wavelet splitting according to (130) we have

I =
∫

Sd−1

2ψ̂0,nψ̂1,ndσ(n)
(130)

=
∫

Sd−1

2(Ĝsρ ψ̂n)(1− Ĝsρ )ψ̂n dσ(n) = 2(Ĝsρ (1− Ĝsρ ))Mψ

⇒
Mψ(ω) =

(
1− 2

(
Ĝsρ (ω)

(
1− Ĝsρ (ω)

)))
Mψ(ω).

(145)

And since 1
2
≤ 1− 2x(1− x)) ≤ 1 for 0 ≤ x ≤ 1 we have for Mψ satisfying (137) the following bounds on Mψ :

0 < δ/2 ≤Mψ(ω) ≤M <∞, for all ω = B%, (146)

therefore guaranteing stability after the splitting (130).

If Nψ ≈ 1B0,% , this vector transformation also allows for an approximate reconstruction by integration over orientations:

f(x) ≈
∫
S2
Wψ [f ](x,n) dσ(n) (147)

=

∫
Sd−1

Wψ1
[f ](x,n) dσ(n) +

∫
Sd−1

Wψ0
[f ](x,n) dσ(n)︸ ︷︷ ︸

Lψ0
[f ](x)

,

and since we are only interested in processing Wψ1
[f ] (the higher frequencies) and not Wψ0

[f ] (the average and global
variations) we do not have to seperate the orientations in Wψ0

[f ] and directly calculate Lψ0
[f ] via

Lψ0
[f ](x) = (φ0 ? f)(x), with φ0 =

∫
Sd−1

ψ0,n dσ(n). (148)

For a design with Nψ = 1B0,% we have

f(x) =

∫
Sd−1

Wψ1
[f ](x,n) dσ(n) + (Gsρ ∗ f)(x). (149)
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C The Bochner-Hecke Theorem and the Spectral Decomposition of the Hankel Transform

In this section we formulate the Bochner-Hecke theorem and then we present the basics that are needed in the analytic
expansion of proper wavelets in the harmonic oscillator basis in Subsection 3.2. In fact, the basics in this appendix will
provide analytic expressions for both ψ : Rd → C and for Mψ : Rd → R+ in Subsection 3.2.

Theorem 6 Let H be a harmonic homogeneous polynomial of degree m in d variables. Let F be an element of
L2((0, r); rd+2m−1dr) then the Fourier transform of their direct product (r,x) 7→ F (r)H(x), which is in L2(Rd), is
given by:

(−i)mH(ω)
∞∫
0

(rρ)
d−2
2

+mJ d−2
2

+m
(ρr)F (r)rd+2m−1dr =

(−i)mH(ω)ρ−( d−1
2

+m)

[
H d−2

2
+m

r
d−1
2

+mF

]
(ρ) ,

where ρ = ‖ω‖ and the H d−2
2

+m
the Hankel Transform given by:

(H d−2
2

+m
φ)(ρ) =

∞∫
0

(ρr)1/2φ(r)J d−2
2

+m
(ρr) dr , φ ∈ L2((0,∞)) . (150)

The proof can be found in [31]pp.24-25. The Hankel Transform Hµ, µ = d−2
2

+m, is a unitary map on L2((0,∞), dr)

and has a complete set of orthonormal eigen functions {Eµn} given by

r 7→ Eµn(r) =

(
2n!

Γ (n+ µ+ 1)

) 1
2

rµ+ 1
2 e−

r2

2 L
(µ)
n (r2), n = 0, 1, 2, . . . , r > 0 , (151)

where L
(µ)
n (r) is the n-th generalized Laguerrre polynomial of type µ > −1,

L
(µ)
n (r) =

r−αer

n!

(
d

dr

)n
(e−rrn+µ), r > 0 ,

with corresponding eigenvalues (−1)n: (Hµφ) =
∞∑
n=0

(−1)n(Eµn , φ)L2((0,∞),dr)E
µ
n . The functions Eµn are also eigen func-

tions of the operator

−
d2

dr2
+ r2 +

µ2 − 1
4

r2
− 2α ,

with eigen value 4n+ 2, cf.[30]p.79, which coincides with the fact that the Harmonic oscillator ‖x‖2 −∆ commutes with
Fourier transform.

These results gives us:
– For d = 2, we have L2(R2) = L2(S1)

⊗
L2((0,∞); rdr) and a Fourier invariant orthonormal base is given by {Ym ⊗

hmn }m∈Z,n∈N∪{0}, where

hmn = r−1/2Emn (r) , (152)

and Ym(φ) = 1√
2π
eimφ. It now follows by the Bochner-Hecke Theorem that:

F(Ym ⊗ hmn ) = F(rmYm ⊗
hmn
rm

) = (−1)n(−i)|m|(Ym ⊗ hmn ). (153)

– For d = 3, we have L2(R2) = L2(S1)
⊗

L2((0,∞); rdr). All l homogeneous harmonic polynomials are spanned by
{x 7→ rlYml (θ, φ)}l=0...∞ ; m=−l,...,l. Define

gln(r) = r−1E
l+ 1

2
n (r) , r > 0 (154)

then gln ∈ L2((0,∞); rdr) are eigen functions of ρ−1H 1
2

+mr
1 with corresponding eigenvalues (−1)n. Therefore it

follows by the Bochner-Hecke Theorem that

F(Yml ⊗ g
l
n) = (i)l(−1)n+l(Yml ⊗ g

l
n) . (155)

D Steerable Orientation Score Transform

In this manuscript we often rely on spherical harmonic decomposition of the angular part of proper wavelets in spatial
and Fourier domain. As the choice of radial basis does not affect steerable filter [39,38,65] properties, we simply write
{gln(r)}∞n=0 for a radial orthonormal basis for L2(R+, r2dr) associated to each 2l + 1-dimensional SO(3)-irreducible sub-
space indexed by l. Then by the celebrated Bochner-Hecke theorem of the previous section this induces a corresponding
orthonormal radial basis {g̃ln(ρ)}∞n=0 in the Fourier domain which can be obtained by a Hankel-type of transform. We
expand our wavelets in spherical harmonics Yml and ball-coordinates (cf. (93)) accordingly:

ψ(x) =
∞∑
n=0

αnl g
l
n(r) Y 0

l (θ, φ), with x = (r cosφ sin θ, r cosφ sin θ, r cos θ),

ψ̂(ω) =
∞∑
n=0

αnl g̃
l
n(ρ) Y 0

l (ϑ, ϕ), with ω = (ρ cosϕ sinϑ, ρ cosϕ sinϑ, ρ cosϑ).
(156)
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Remark 16 In Section 3.3, we consider the modified Zernike basis in which case gln and g̃ln are given by respectively by
(100) and (98), whereas for the harmonic oscillator basis one has gln = il(−1)n+lg̃ln given respectively by (92) and (94).

We obtain steerability via finite series truncation at n = N and l = L. Then we rotate the steerable kernels via the
Wigner-D functions Dl0,m(γ, β, 0) ∈ R and one obtains the following steerable implementations of orientation scores:

U(x,n) =
N∑
n=0

L∑
l=0

l∑
m=−l

αnl D
l
0,m(γ, β, 0) · ((gln ⊗ Y 0

l ) ? f)(x) =

N∑
n=0

L∑
l=0

l∑
m=−l

αnl D
l
0,m(γ, β, 0) · F−1

[
g̃ln ⊗ Y 0

l · f̂
]

(x)

(157)

where n = (cos γ sinβ, sin γ sinβ, cosβ)T , ? denotes correlation, the overline denotes complex conjugation and with
function product (g̃ln ⊗ Yml )(x) = g̃ln(r) Yml (θ, φ).
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20. R. Duits, H. Führ, B. Janssen, M. Bruurmijn, L. Florack, H. van Assen, Evolution equations on gabor transforms and
their applications, Applied and Computational Harmonic Analysis 35 (2013) 483–526.

21. R. Duits, M. Duits, and M. van Almsick. Invertible orientation scores as an application of generalized wavelet theory.
Technical report, TUE, Eindhoven, March 2004. Technical Report 04-04, Biomedical Image and Analysis, Department
of Biomedical Engineering, Eindhoven University of Technology.

22. R. Duits, L.M.J. Florack, J. de Graaf, and B. ter Haar Romeny. On the axioms of scale space theory. Journal of
Mathematical Imaging and Vision, 20:267–298, May 2004.

23. R. Duits, M. van Almsick, M. Duits, E. Franken, and L.M.J. Florack. Image processing via shift-twist invariant
operations on orientation bundle functions. In Niemann Zhuralev et al. Geppener, Gurevich, editor, 7th International
Conference on Pattern Recognition and Image Analysis: New Information Technologies, pages 193–196, St.Petersburg,
October 2004. Extended version is to appear in special issue of the International Journal for Pattern Recognition and
Image Analysis MAIK.



DRAFT VERSION of PART II: Invertible Orientation Scores 61

24. R.Duits, E.Franken. Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation
scores. part I: linear left-invariant diffusion equations on SE(2). Q APPL MATH , 68, 293–331, 2010.

25. R.Duits, E.Franken. Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation
scores. part II: Non-linear left-invariant diffusions on invertible orientation score. Q APPL MATH , 68, 293–331, 2010.

26. R.Duits, E.Franken. Line enhancement and completion via left invariant scale spaces on SE(2), LNCS 5576, SSVM
2009, p.795–807, 2009.

27. R. Duits and E. M. Franken. Left-invariant diffusions on the space of positions and orientations and their application
to crossing-preserving smoothing of HARDI images. IJCV vol. 92, pp. 231–264, 2011.

28. R. Duits, S. Meesters, J. Mirebeau, J. Portegies, Optimal paths for variants of the 2d and 3d Reeds-Shepp car with
applications in image analysis, (arXiv:1612.06137 ), submitted to JMIV 2017.

29. N. Dungey, A. F. M. ter Elst, and D. W. Robinson. Analysis on Lie groups with polynomial growth, volume 214.
Birkhauser-Progress in Mathematics, Boston, 2003.

30. S.J.L. Eijndhoven and J. de Graaf. Some results on hankel invariant distribution spaces. Proceedings of the Koninklijke
Akademie van Wetenschapppen, Series A, 86(1):77–87, 1982.

31. J. Faraut and K. Harzallah. Deux cours d’analyse harmonique. Birkhaeuser, Tunis, 1984.
32. M. Felsberg, P.-E. Forssén, and H. Scharr. Efficient robust smoothing of low-level signal features. Technical Report

LiTH-ISY-R-2619, SE-581 83 Linkoping, Sweden, August 2004.
33. M. Felsberg, P.-E. Forssén, and H. Scharr. Channel smoothing: Efficient robust smoothing of low-level signal features.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005. accepted.
34. L. M. J. Florack. Image Structure. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
35. P.-E. Forssén and G. H. Granlund. Sparse feature maps in a scale hierarchy. In G. Sommer and Y.Y. Zeevi, editors,

Proc. Int. Workshop on Algebraic Frames for the Perception-Action Cycle, volume 1888 of Lecture Notes in Computer
Science, Kiel, Germany, September 2000. Springer, Heidelberg.

36. P.E. Forssen. Low and Medium Level Vision using Channel Representations. PhD thesis, Linkoping University, Dept.
EE, Linkoping, Sweden, March 2004.

37. E.M.Franken and R.Duits. Crossing-Preserving Coherence-Enhancing Diffusion via Invertible Orientation Scores
IJCV(85), p.253-278, 2009.

38. E. M. Franken, Enhancement of Crossing Elongated Structures in Images. PhD thesis, Eindhoven
University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands, 2008.
http://www.bmia.bmt.tue.nl/people/EFranken/PhDThesisErikFranken.pdf.

39. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell 13(9),
891–906, 1991.
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Éditions de lÉcole Polytechnique 2008.

62. J. Petitot. The neurogeometry of pinwheels as a sub-Riemannian contact structure. Journal of Physiology-Paris,
97(2–3):265–309, March 2003.

63. J.M. Portegies, R.H.J.Fick, G.R.Sanguinetti, G.Girard, S.P.L.Meesters and R.Duits. Improving Fiber Alignment in
HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution PLosOne Magnetic Resonance
Imaging, DOI: 10.1371/journal.pone.0138122, 2015.

64. G.R. Sanguinetti, E.J. Bekkers, R. Duits, M.H.J. Janssen, A. Mashtakov, and J-M. Mirebeau. Sub-Riemannian
Fast Marching in SE(2). In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications,
number 9423 in Lecture Notes in Computer Science, pages 366–374. Springer International Publishing, 2015. DOI:
10.1007/978-3-319-25751-8 44.

65. Reisert, M.: Group Integration Techniques in Pattern Analysis - A Kernel View. Ph.D. thesis, Albert-Ludwigs-
University, 2008.

66. W. Rudin Functional Analysis, Mc-Graw Hill Science, 1973.
67. Ruijters, D., Vilanova, A.: Optimizing GPU volume rendering. J. WSCG 14(1-3), 9–16 , 2006.
68. W. Schempp and B. Dreseler Einfuhrung in die Harmonsiche Analyse. B.G.Teubner, Stuttgart, 1980.
69. U. Sharma and R. Duits, Left-invariant evolutions of wavelet transforms on the similitude group, ACHA, vol. 39,

pp. 110–137, 2015.
70. L. Siffre, Rigid-Motion Scattering for Image Classification. PhD thesis, Ecole Polyechnique, CMAP, Paris, 2014.
71. M. Sugiura. Unitary representations and harmonic analysis. North-Holland Mathematical Library, 44., Amsterdam,

Kodansha, Tokyo, second edition, 1990.
72. K.K. Thornber and L.R. Williams. Analytic solution of stochastic completion fields. Biological Cybernetics, 75:141–

151, 1996.
73. D. Y. Ts’0, R. D. Frostig, E. E. Lieke, and A. Grinvald. Functional organization of primate visual cortex revealed by

high resolution optical imaging. Science, 249:417–20, 1990.
74. S. Twareque Ali. A general theorem on square-integrability: Vector coherent states. Journal of Mathematical Physics,

39, 1998. Number 8.
75. M. A. van Almsick, R. Duits, E. Franken, and B.M. ter Haar Romeny. From stochastic completion fields to tensor

voting. In Proceedings DSSCC-workshop on Deep Structure Singularities and Computer Vision, pages –, Maastricht
the Netherlands, June 9-10 2005. Springer-Verlag.

76. J. Weickert. Coherence enhancing diffusion, IJCV 31(3), p. 111–127, 1999.
77. L. R. Williams and J.W. Zweck. A rotation and translation invariant saliency network. Biological Cybernetics, 88:2–10,

2003.
78. J. Wloka. Partial Differential Equations. Cambridge University Press, 1987.


